• Title/Summary/Keyword: Maximum Speed Limit

Search Result 142, Processing Time 0.038 seconds

Optimal current angle control method of interior permanent magnet Synchronous Motors (매입형 영구자석 동기전동기의 최적 전류각 제어)

  • 김명찬;김종구;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

Maximum Torque Operation of an Induction Machine in the field weakening regoin (약계자 영역에서 유도전동기의 최대 토오크 운전)

  • 김상훈;설승기;박민호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • In this paper, a new approach for the induction machine control whih ensures producing maximum torque per ampere over the entire field weakening region is presented. In addition, the relation of the output torque capability with the leakage factor of the machine is examined. Also the smooth and precise transition into the field weakening operation can be achieved by adjusting the base speed for the field weakening operation according to the flux level, the current limit and the voltage limit. The proposed is verified through simulation and experiment for a 5hp laboratory induction motor drive system.

  • PDF

Maximum Torque Control of Induction Motor Drive using Multi-HBPI Controller (다중 HBPI 제어기를 이용한 유도전동기 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.26-35
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed and current using hybrid PI(HBPI) controller and estimation of speed using ANN. Also, this paper is proposed maximum torque control of induction motor using slip angular speed and current condition at widely speed range. The performance of the proposed induction motor drive with maximum torque control using HBPI controller is verified by analysis results at dynamic operation conditions.

Current Control Method of WRSM in High-speed Operation Range

  • Lee, Jae-Jun;Lee, Ki-Doek;Jang, Ik-Sang;Lee, Sung-Gu;Chae, Woong-Chan;Lee, Hyung-Woo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2052-2056
    • /
    • 2015
  • This Paper analyzes the characteristics of the WRSM in high-speed operation range. To verify the control characteritics of various WRSM models, the relative position of the central point of current limit circle and voltage limit ellipse is defined as M value and 3 models according to Mmax value are designed through inductance change. Through the designed models, the current control method of 3-variables control for maximum power especially in high-speed operation range is presented.

Decision Feedback Doppler Adaptive Band-Limit Algorithm for Maximum Doppler frequency Estimation (속도 추정 시 부가 잡음의 영향을 억제하기 위한 결정 궤환 적응형 대역 제한 방법에 대한 연구)

  • 박구현;한상철;류탁기;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1111-1117
    • /
    • 2003
  • The maximum Doppler frequency, or equivalently, the mobile speed is very useful information to optimize the performance of many wireless communication systems. However, the performance of a maximum Doppler frequency estimator is limited since it requires an estimate of the signal-to-noise ratio (SNR) of the channel environment. In this paper, the improved method for the maximum Doppler frequency estimations based on the decision feedback Doppler adaptive band-limit (DF-DABL) method is proposed. To reduce the effect of additive noise, the proposed algorithm uses a novel Doppler adaptive band-limit (DABL) technique. The distortion due to the additive noise is drastically removed by the proposed DF-DABL method. Especially, the DF-DABL method does not need any other channel information such as SNR.

A Study on the Validity of Proper Maximum Navigation Speed in a Straight Waterway (직전항로에서의 적정 최대속력에 대한 검토.연구)

  • Park Young-Soo;Jong Jae-Yong;Park Jin-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.139-144
    • /
    • 2006
  • Recently, ships' average navigation speed become faster than before because of the increasing of high-speeds vessel including container ships and passenger-ferries. So, it is considered that the speed limit in the navigation channel in Korea isn't proper for vessel management in these days. Also, there is rare paper studies about the speed limit quantitatively and numerically, especially the speed limit is discussing continuously, as abrogation of Incheon Port's speed limit and alleviation of Gwang-yang Port's speed limit according to the requests by the navigating mariners. Consequently this paper deals with the effectiveness of speed limits using the Environmental Stress Model, after replay of the navigation traffic flow in the straight waterway using marine traffic flow simulation technique.

  • PDF

Study for Application of High Speed R-bar System in Metro Express Railway Tunnel (광역급행철도 터널에 고속 R-bar 적용에 관한 연구)

  • Ahn, Young-Hoon;Song, Jin-Ho;Kim, Si-Gu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.409-412
    • /
    • 2011
  • Maximum speed of the train could not exceed over 160km/h with R-bar system in the underground type tunnel structure. By the research to overcome this speed limit, maximum speed has reached up to 200~250km/h recently by new R-bar system. It is under discussion to construct Metro Express Line between Gyonggido and Seoul which requires maximum speed 180km/h~230km/h. New R-bar is an optimal system to achieve the speed improvement in this line. This study shows application of the high speed R-bar system in the underground tunnel section.

  • PDF

A Study on the Location of Speed Limit Post of Curved Track (급곡선 궤도에서 속도제한표 적정위치)

  • 이기승;이종수;김성호
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.289-294
    • /
    • 2001
  • A curved track needs balanced super elevation according to the speed of the passing train and it is limited by maximum allowable amount. Therefore, passing speed at high degree curved track has to be controlled below the limits. Accurate position of the Speed Limit Post(SLP), which shows allowable speed of curved track dose not regulated so design and line side maintenance engineer adopt the position differently, When the rate of cant deficiency is considered on transition-curved section, the SLP should be located at the beginning point of the transition curve so as to control the speed of passing train and it will increase ride quality to passenger.

  • PDF

Characteristics of Propagating Tribrachial Flames in Counterflow

  • Ko, Young-Sung;Chung, Tae-Man;Chung, Suk-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1710-1718
    • /
    • 2002
  • The effect of fuel concentration gradient on the propagation characteristics of tribrachial (or triple) flames has been investigated experimentally in both two-dimensional and axisymmetric counterflows. The gradient at the stoichiometric location was controlled by the equivalence ratios at the two nozzles; one of which is maintained rich, while the other lean. Results show that the displacement speed of tribrachial flames in the two-dimensional counterflow decreases with fuel concentration gradient and has much larger speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large displacement speed can be attributed to the flame propagation with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient was estimated and the curvefit of the experimental data substantiates this limiting speed. As mixture fraction gradient approaches zero, a transition occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar results have been obtained for tribrachial flames propagating in axisymmetric counterflow.

Characteristics of Propagating Tribrachial Flames in Counterflow (대향류 유동장에서 삼지 화염 전파 특성에 관한 연구)

  • Chung, Tae-Man;Ko, Young-Sung;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.422-427
    • /
    • 2000
  • Propagation characteristics of tribrachial flames have been investigated experimentally in both two-dimensional and axisymmetric counterflows. Mixture fraction gradient at stoichiometric location is controlled by varying equivalence ratios at the two nozzles, one of which maintains rich while the other lean premixture. Tribrachial flames propagating through these mixtures are investigated. The propagation speed of tribrachial flames in two-dimensional counterflow decreases with fuel concentration gradient and has much higher speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large propagation speed can be attributed to the tribrachial flame propagating with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient is estimated and extrapolated experimental results substantiate this limiting speed. As mixture fraction gradient approaches zero, a transition in propagation characteristics occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar behavior has been obtained for tribrachial flames propagating in axisymmetric counterflow.

  • PDF