• Title/Summary/Keyword: Maximum Power Demand

Search Result 192, Processing Time 0.032 seconds

Construction of small hydropower facilities performance evaluation system (소수력 발전설비 성능평가 시스템 구축)

  • Kim, Youngjoon;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.2-206.2
    • /
    • 2011
  • Domestic hydroelectric power plants has been manufactured as the design condition by the demand. Hydraulic turbine power plants operating at appointed load shall be operate stable in terms of pressure, discharge, rotational speed and torque. A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and maximum steady-state runaway speed, as well as guarantees related to cavitation. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore We planned making a basis of performance test of small hydropower turbine by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system.

  • PDF

Load Shedding Schemes of Under Frequency Relay to Improve Reliability in Power Systems (전력계통 신뢰도 강화를 위한 저주파계전기의 적정 부하차단 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin;Kim, Il-Dong;Yang, Jeong-Jae;Cho, Beom-Seob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1214-1220
    • /
    • 2010
  • This paper proposes an efficient under frequency relay load shedding scheme for the korea power system which is more than two times than the system size and its capacity of the power system 10 years ago. The proposed method is keeping the power system stability and supports for the operating system during critical situations such as big disturbances and unstable in supply and demand. In order to determine the number of load shedding steps, the load to be shed per step, and frequency level, it is necessary to investigate and analyze maximum losses of generation due to the biggest contingency, maximum system overload, maximum keeping frequency, maximum load to be shed, and recovery frequency. The proposed method is applied to Off-peak load(25,400MW) and Peak load(62,290MW) of Korea Electric Power Corporation to demonstrate its effectiveness.

Simulation and Data Sampling Modelling for 1000MW Boiler Process (1000MW 보일러 프로세스의 모델링과 데이터 추출 및 시뮬레이션)

  • Park, Doo-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.301-302
    • /
    • 2007
  • Maximum power consumption was up to 6,228kW in the summer of 2007 due to steady development of industry as well as increased demand of individual. Twenty fossil-Fired Thermal Power Plant for 500MW were underconstructed at present. KEPRI(Korea Electric Power Research Institute) manage 'Development of Advanced Fossil-Fired Thermal Power Generation System' project to construct high efficient power plant of 1000MW capacity for preparing increased demand of power. Design of control logic and data sampling were explained and high efficient control logic was simulated in detail in 'The Development of Next Generation Power Plant Instrument and Control System'(sub-project of 'Development of Advanced Fossil-Fired Thermal Power Generation System' project).

  • PDF

Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent (Lyapunov 지수를 이용한 전력 수요 시계열 예측)

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1647-1652
    • /
    • 2009
  • Generally the neural network and the fuzzy compensative algorithm are applied to forecast the time series for power demand with a characteristic of non-linear dynamic system, but it has a few prediction errors relatively. It also makes long term forecast difficult for sensitivity on the initial condition. On this paper, we evaluate the chaotic characteristic of electrical power demand with analysis methods of qualitative and quantitative and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction, time series forecast for multi dimension using Lyapunov exponent quantitatively. We compare simulated results with the previous method and verify that the purpose one being more practice and effective than it.

Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent (Lyapunov 지수를 이용한 전력 수요 시계열 예측)

  • Choo, Yeongyu;Park, Jae-hyeon;Kim, Young-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.171-174
    • /
    • 2009
  • Generally the neural network and the fuzzy compensative algorithm are applied to forecast the time series for power demand with a characteristic of non-linear dynamic system, but it has a few prediction errors relatively. It also makes long term forecast difficult for sensitivity on the initial condition. On this paper, we evaluate the chaotic characteristic of electrical power demand with analysis methods of qualitative and quantitative and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction, time series forecast for multi dimension using Lyapunov exponent quantitatively. We compare simulated results with the previous method and verify that the purpose one being more practice and effective than it.

  • PDF

Consensus-Based Distributed Algorithm for Optimal Resource Allocation of Power Network under Supply-Demand Imbalance (수급 불균형을 고려한 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘)

  • Young-Hun, Lim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.440-448
    • /
    • 2022
  • Recently, due to the introduction of distributed energy resources, the optimal resource allocation problem of the power network is more and more important, and the distributed resource allocation method is required to process huge amount of data in large-scale power networks. In the optimal resource allocation problem, many studies have been conducted on the case when the supply-demand balance is satisfied due to the limitation of the generation capacity of each generator, but the studies considering the supply-demand imbalance, that total demand exceeds the maximum generation capacity, have rarely been considered. In this paper, we propose the consensus-based distributed algorithm for the optimal resource allocation of power network considering the supply-demand imbalance condition as well as the supply-demand balance condition. The proposed distributed algorithm is designed to allocate the optimal resources when the supply-demand balance condition is satisfied, and to measure the amount of required resources when the supply-demand is imbalanced. Finally, we conduct the simulations to verify the performance of the proposed algorithm.

Analysis of effect on power system considering the maximum penetration limit of wind power (풍력발전 한계운전용량에 대한 계통영향 분석)

  • Myung, Ho-San;Kim, Bong-Eon;Kim, Hyeong-Taek;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • About supply and demand to see that you need to match, the limitations of wind power capacity is low demand and the commitment of the general generator will exist between the minimum generation. if the turbine's output can be controlled, The limitation of wind power capacity will be adopted based on instant power generation. Namely, The minimum limits of wind power generation based load operation by calculating the amount that is higher than if the output should be restricted to highest operation. in this paper, we committed to the demand for low enough that the combination of the general generator of wind power capacity to accommodate the operation of determining whether the limit is intended to. For this, power system analysis program PSS/E was used, Jeju system by implementing the model simulations were performed.

Design and Implementation of Digital Motor Control Center Including Load Control Function (부하제어 기능을 갖는 디지털형 전동기제어반의 설계 및 구현)

  • 우천희;강신준;이덕규;구영모;김학배;이성환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.868-875
    • /
    • 1999
  • In this paper, digital motor control center using protection relay is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which have various load environments and capacities in power systems. Digital motor control center is employed by power supervisory control systems without separate remote terminal unit and transducers adding communicational ability. Also we develope a maximum demand controller to control the load effectively at peak status and a power factor controller to minimize real power losses and improve the power factor. Therefore, when using the developed controller, real time computation is possible by loading DSP in hardware and applying real-time kernel which can convert each algorithm to task module.

  • PDF

Development of Load Control and Demand Forecasting System

  • Fujika, Yoshichika;Lee, Doo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.104.1-104
    • /
    • 2001
  • This paper presents a technique to development load control and management system in order to limits a maximum load demand and saves electric energy consumption. The computer programming proper load forecasting algorithm associated with programmable logic control and digital power meter through inform of multidrop network RS 485 over the twisted pair, over all are contained in this system. The digital power meter can measure a load data such as V, I, pf, P, Q, kWh, kVarh, etc., to be collected in statistics data convey to data base system on microcomputer and then analyzed a moving linear regression of load to forecast load demand Eventually, the result by forecasting are used for compost of load management and shedding for demand monitoring, Cycling on/off load control, Timer control, and Direct control. In this case can effectively reduce the electric energy consumption cost for 10% ...

  • PDF

A Study on the Development of Battery Energy Storage System (전지이용 전력저장장치 기술개발)

  • Hwang, Yong-Ha;Lee, Keun-Seob
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.905-907
    • /
    • 1993
  • Demand for electricity is increasing annually. Especially, the daytime demand grawth shows higher than any other time period. So the big difference between maximum and minimum electrical demand becomes another important problem to be solved. The Battery Energy Storage System is chosen as one of the solutions among the sevral methods. The purpose of utilization of Battery Energy Storage System is to improve the daily load factor. Also, Battery Energy Storage System may be used for the load levelling or the load shifting as well as the spinning reserve. Up to now, only the pumped hydro power plant system has been operated on the commercial basis, but this system has so many constraints such as site, environmental effects, construction period, ect. Being considered current electrical power situation the development of electric storage system is in need latly. Among the various electric storage systems, Battery Energy System is chosen with the top priority because it has sevral merits to cover such as the short construction period, the demand site installation, and the food environmental characteristics.

  • PDF