• Title/Summary/Keyword: Maximum Penalized Likelihood Estimate

Search Result 7, Processing Time 0.022 seconds

Maximum Penalized Likelihood Estimate in a Sobolev Space

  • Park, Young J.;Lee, Young H.
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • We show that the Maximum Penalized Likelihood Estimate uniquely exits in a Sobolve spece which consists of bivariate density functions. The Maximum Penalized Likehood Estimate is represented as the square of the sum of the solutions of the Modified Helmholtz's equation on the compact subset of R$^{2}$.

  • PDF

A correction of SE from penalized partial likelihood in frailty models

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.895-903
    • /
    • 2009
  • The penalized partial likelihood based on restricted maximum likelihood method has been widely used for the inference of frailty models. However, the standard-error estimate for frailty parameter estimator can be downwardly biased. In this paper we show that such underestimation can be corrected by using hierarchical likelihood. In particular, the hierarchical likelihood gives a statistically efficient procedure for various random-effect models including frailty models. The proposed method is illustrated via a numerical example and simulation study. The simulation results demonstrate that the corrected standard-error estimate largely improves such bias.

  • PDF

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.

Penalized maximum likelihood estimation with symmetric log-concave errors and LASSO penalty

  • Seo-Young, Park;Sunyul, Kim;Byungtae, Seo
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.641-653
    • /
    • 2022
  • Penalized least squares methods are important tools to simultaneously select variables and estimate parameters in linear regression. The penalized maximum likelihood can also be used for the same purpose assuming that the error distribution falls in a certain parametric family of distributions. However, the use of a certain parametric family can suffer a misspecification problem which undermines the estimation accuracy. To give sufficient flexibility to the error distribution, we propose to use the symmetric log-concave error distribution with LASSO penalty. A feasible algorithm to estimate both nonparametric and parametric components in the proposed model is provided. Some numerical studies are also presented showing that the proposed method produces more efficient estimators than some existing methods with similar variable selection performance.

Note on the Consistency of a Penalized Maximum Likelihood Estimate (벌점가능추정치의 일치성에 대하여)

  • Ahn, Sung-Mahn
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.573-578
    • /
    • 2009
  • We prove the consistency of a penalized maximum likelihood estimate proposed by Ahn (2001). The PMLE not only avoids the well-known problem that the ordinary likelihood of the normal mixture model is unbounded for any given sample size, but also removes redundant components.

Mean estimation of small areas using penalized spline mixed-model under informative sampling

  • Chytrasari, Angela N.R.;Kartiko, Sri Haryatmi;Danardono, Danardono
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.349-363
    • /
    • 2020
  • Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However, application of the approach in informative sampling in a published article is uncommon. We propose a semiparametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The response variable is explained in terms of mean model, informative sample effect, area random effect and unit error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion probability to account for the informative sample effect. We determine the best and unbiased estimators for coefficient model and derive the restricted maximum likelihood estimators for the variance components. A simulation study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline to approach the function of the inclusion probability provides no significant difference distribution of root mean square error, except for few smaller samples.

A data-adaptive maximum penalized likelihood estimation for the generalized extreme value distribution

  • Lee, Youngsaeng;Shin, Yonggwan;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.493-505
    • /
    • 2017
  • Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.