• Title/Summary/Keyword: Maximum Number

Search Result 4,865, Processing Time 0.03 seconds

Maximum Stem Number and Mortality Model for Even-Aged Pinus Densiflora Stand in Kangwon-Province, Korea (강원도지방(江原道地方) 소나무 동령임분(同齡林分)의 최대임목본수(最大林木本數) 및 고사(枯死)모델)

  • Lee, Woo-Kyun;Seo, Jeong-Ho;Bae, Sang-Won
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.634-644
    • /
    • 2000
  • Sterba's theory that stem number maintaining maximum basal area per ha is maximum stem number of a stand, had been applied to data from 103 temporary plots in even-aged Pinus densiflora stands in Kangwon province, Korea and a maximum stem number and mortality model was prepared. DBH growth model which estimates dbh with the independent variables of stem number per ha and dominant height shows the good statistical performance, and explains well differences in dbh growth that would be caused by stem number per ha and dominant height. Basal area model derived from dbh growth model also explains well differences in basal area according to stem number per ha and dominant height. The maximum stem number curve, which is derived from stem number per ha at maximum basal area for dominant height and dbh, represents well the upper range of stem number per ha observed. And maximum stand density index derived from the maximum stem number model for dbh could be used for the index of maximum potential density of a stand. The maximum stem number model and maximum stand density index in this study were not based on stand data with maximum density but based on the temporary data from stands with various density. This maximum stem number model can be applied to the estimation of mortality and maximum potential volume.

  • PDF

Maximum Limit on the Number of Science Papers Man Can Write

  • Kim, Sung-Man
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.116-119
    • /
    • 2019
  • "Science" journal is one of the world's top academic journals. Many researchers are trying to publish their work in Science, and only a few selected novel papers are accepted. However, we think that this kind of process cannot continue forever. In this paper, we show that there is a limit to the number of Science papers that can be written. Therefore, the day will come when Science cannot publish new papers anymore. Using a similar method, we estimate the maximum limit on the number of pop songs that can be composed. By extending our discussion to all kinds of digital contents, we derive a mathematical expression for the maximum number of digital contents of a certain type that can be created. These results imply that someday man will not be able to produce new papers or new digital contents anymore. This conclusion raises deep philosophical questions.

FRACTAL DIMENSION AND MAXIMUM SUNSPOT NUMBER IN SOLAR CYCLE (태양주기별 흑점수의 프랙탈 차원과 최대흑점수의 상관관계)

  • Kim R.S.;Yi Y.;Cho K.S.;Moon Y.J.;Kim S.W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.227-236
    • /
    • 2006
  • The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center) and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89) between the observed and predicted maximum sunspot numbers in the solar cycles.

Maximum Sunspot Numbers and Active Days

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.163-168
    • /
    • 2013
  • Parameters associated with solar minimum have been studied to relate them to solar activity at solar maximum so that one could possibly predict behaviors of an upcoming solar cycle. The number of active days has been known as a reliable indicator of solar activity around solar minimum. Active days are days with sunspots reported on the solar disk. In this work, we have explored the relationship between the sunspot numbers at solar maximum and the characteristics of the monthly number of active days. Specifically, we have statistically examined how the maximum monthly sunspot number of a given solar cycle is correlated with the slope of the linear relationship between monthly sunspot numbers and the monthly number of active days for the corresponding solar cycle. We have calculated the linear correlation coefficient r and the Spearman rank-order correlation coefficient $r_s$ for data sets prepared under various conditions. Even though marginal correlations are found, they turn out to be insufficiently significant (r ~ 0.3). Nonetheless, we have confirmed that the slope of the linear relationship between monthly sunspot numbers and the monthly number of active days is less steep when solar cycles belonging to the "Modern Maximum" are considered compared with rests of solar cycles. We conclude, therefore, that the slope of the linear relationship between monthly sunspot numbers and the monthly number of active days is indeed dependent on the solar activity at its maxima, but that this simple relationship should be insufficient as a valid method to predict the following solar activity amplitude.

Predicting Maximum Traction for Improving Traversability of Unmanned Robots on Rough Terrain (무인 로봇의 효율적 야지 주행을 위한 최대 구동력 추정)

  • Kim, Ja-Young;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.940-946
    • /
    • 2012
  • This paper proposes a method to predict maximum traction for unmanned robots on rough terrain in order to improve traversability. For a traction prediction, we use a friction-slip model based on modified Brixius model derived empirically in terramechanics which is a function of mobility number $B_n$ and slip ratio S. A friction-slip model includes characteristics of various rough terrains where robots are operated such as soil, sandy soil and grass-covered soil. Using a friction-slip model, we build a prediction model for terrain parameters on which we can know maximum static friction and optimal slip with respect to mobility number $B_n$. In this paper, Mobility number $B_n$ is estimated by modified Willoughby Sinkage model which is a function of sinkage z and slip ratio S. Therefore, if sinkage z and slip ratio are measured once by sensors such as a laser sensor and a velocity sensor, then mobility number $B_n$ is estimated and maximum traction is predicted through a prediction model for terrain parameters. Estimation results for maximum traction are shown on simulation using MATLAB. Prediction Performance for maximum traction of various terrains is evaluated as high accuracy by analyzing estimation errors.

Content based image retrieval using maximum color

  • Park, Jong-An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.232-237
    • /
    • 2013
  • This paper presents image database retrieval based on maximum color occurrenceusing Hue, Saturation and Value (HSV) color space. Our system is based on color segmentation. We dividedthe image into n number of areas based on different selected ranges of hue and value, then each area is partitioned into m number of segments based on the number of pixels it contains, after this we calculated the maximumcolor occurrence in each segment and used its HSV value. This is used as a feature vector.

A Scheduling Algorithm Using the Interval Graph (구간 그래프를 이용한 스케쥴링 알고리듬)

  • 김기현;정정화
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.84-92
    • /
    • 1994
  • In this paper, we present a novel scheduling algorithm using the weighted interval graph. An interval graph is constructed, where an interval is a time frame of each operation. And for each operation type, we look for the maximum clique of the interval graph: the number of nodes of the maximum clique represents the number of operation that are executed concurrently. In order to minimize resource cost. we select the operation type to reduce the number of nodes of a maximum clique. For the selected operation type, an operation selected by selection rule is moved to decrease the number of nodes of a maximum clique. A selected operation among unscheduled operations is moved repeatly and assigned to a control step consequently. The proposed algorithm is applied to the pipeline and the nonpipeline data path synthesis. The experiment for examples shows the efficiency of the proposed scheduling algorithm.

  • PDF

Simulation Model Development for Configuring a Optimal Port Gate System (최적 항만 게이트 시스템 구성을 위한 시뮬레이션 모델 개발)

  • Park, Sang-Kook;Kim, Young-Du
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.421-430
    • /
    • 2016
  • In this study, a gate simulation model was developed to reduce the truck waiting time for trucking companies servicing container terminals. To verify the developed model, 4 weeks of truck gate-in/gate-out data was collected in December 2014 at the Port of Busan New Port. Also, the existing gate system was compared to the proposed gate system using the developed simulation model. The result showed that based on East gate-in, a maximum number of 50 waiting trucks with a maximum waiting time of 120 minutes. With the proposed system the maximum number of waiting trucks was 10 with a maximum waiting time of 5.3 minutes. Based on West gate-in, the maximum number of waiting trucks was 17 and the maximum waiting time was 34 minutes in the existing gate system. With the proposed system the maximum number of waiting trucks was 10 with a maximum waiting time of 5.3 minutes. Based on West gate-out, the maximum number of waiting trucks was 11 with a maximum waiting time of 5.5 minutes. With the proposed system the maximum number of waiting trucks was 9 with a maximum waiting time of 4.4 minutes. This developed model shows how many waiting trucks there are, depending on the gate-in/gate-out time of each truck. This system can be used to find optimal gate system operating standards by assuming and adjusting the gate-in/gate-out time of each truck in different situations.

Prediction of Long-term Solar Activity based on Fractal Dimension Method

  • Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.3-46
    • /
    • 2016
  • Solar activity shows a self-similarity as it has many periods of activity cycle in the time series of long-term observation, such as 13.5, 51, 150, 300 days, and 11, 88 years and so on. Since fractal dimension is a quantitative parameter for this kind of an irregular time series, we applied this method to long-term observations including sunspot number, total solar irradiance, and 3.75 GHz solar radio flux to predict the start and maximum times as well as expected maximum sunspot number for the next solar cycle. As a result, we found that the radio flux data tend to have lower fractal dimensions than the sunspot number data, which means that the radio emission from the sun is more regular than the solar activity expressed by sunspot number. Based on the relation between radio flux of 3.75 GHz and sunspot number, we could calculate the expected maximum sunspot number of solar cycle 24 as 156, while the observed value is 146. For the maximum time, estimated mean values from 7 different observations are January 2013 and this is quite different to observed value of February 2014. We speculate this is from extraordinary extended properties of solar cycle 24. As the cycle length of solar cycle 24, 10.1 to 12.8 years are expected, and the mean value is 11.0. This implies that the next solar cycle will be started at December 2019.

  • PDF

Stability Evaluation of Sheet-pile Walls during Excavation Works in Soft Ground (연약지반 굴착시 강널말뚝 흙막이벽의 안정성 평가)

  • Hong, Won-Pyo;Kim, Dong-Wook;Song, Young-Suk;Lee, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1442-1447
    • /
    • 2005
  • Based on the field measuring data obtained from excavation sections in Inchon International Airport project, the relationships between the horizontal displacement of sheet-pile walls and the deformations of soft ground around the excavation were investigated. The horizontal displacements of walls according to supporting method are largely occurred in order of anchors, anchors with struts, and struts. The depths of maximum horizontal displacement are varied with supporting systems. If the stability number shows lower than ${\pi}$, the maximum horizontal displacement and the velocity of maximum horizontal displacement are respectively developed less than 1% of excavation depth and 1mm/day. When the stability number shows lower than ${\pi}+2$, the maximum horizontal displacement and the velocity are respectively developed less than 2.5% of excavation depth and 2mm/day. Also, when the stability number shows more than ${\pi}+2$, the maximum horizontal displacement and the velocity are rapidly increased.

  • PDF