• 제목/요약/키워드: Maximum Current Density

검색결과 590건 처리시간 0.026초

Influence of Corrosion Potential and Current Density on Polarization Curve Variations using Polycarbonate[III]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu;Kim, Myung-Sun;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권1호
    • /
    • pp.43-50
    • /
    • 2000
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves using polycarbonate. The results were particularly examined to identify the influences affecting the corrosion potential including various conditions such as temperature, pH, catalytic enzyme, and salt. The lines representing the active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme, and salt. The tafel slope for the anodic dissolution was determined based on the polarization effect with various conditions. The slope of the polarization curves describing the active-to-passive transition region were noticeably shifted in direction. Also, from the variation in the conditions, the optimum conditions were established for the most rapid transformation, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(Ir/If). The value of Ir/If was then used in measuring the extent of the critical corrosion sensitivity of the polycarbonate. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF

자동노출제어장치의 채광창 차폐정도와 농도, 감도의 변화가 관전류량과 영상품질에 미치는 영향 (Effects of Field Configuration Shielding Area and Changing of Density and Sensitivity on Tube Current and Image Quality in Automatic Exposure Control System)

  • 정민규;성열훈
    • 한국방사선학회논문지
    • /
    • 제14권5호
    • /
    • pp.635-642
    • /
    • 2020
  • 본 연구에서는 자동노출제어장치(automatic exposure control, AEC)의 채광창 차폐정도와 농도, 감도가 관전류량과 영상품질에 미치는 영향을 분석하였다. 실험에 사용된 장비는 X선관과 간접방식의 디지털검출기가 일체형인 디지털방사선발생장치(Digital Diagnost, Philips, Netherlands)를 사용하였다. 채광창 차폐정도는 3 mm 두께의 납을 이용하여 0%부터 100%까지 12.5%씩 순차적으로 누적 차폐하여 9단계로 구분하였다. 농도는 제조사에서 제시한 3단계(+2.5, 0, -2.5)와 감도 3단계(S200, S400, S800)를 대상으로 하였다. 관전류량 평가는 관전압을 40 kVp로 고정하고 AEC 조절인자들이 교차한 81가지의 조합조건에서 자동 노출된 관전류량을 측정하였다. 영상품질평가는 자체 제작한 원뿔형 피라미드 팬텀의 방사선영상을 육안 평가하여 유효한 영상을 선발하였고 이들의 신호 대 잡음비(signal to noise ratio, SNR)을 측정하였다. 그 결과 관전류량은 채광창 차폐정도가 100%, 감도 S200, 농도 2.5일 때 60.0 mAs로 가장 많이 조사되었으며, 채광창 차폐정도가 0%, 감도 S800, 농도 -2.5일 때 0.9 mAs로 가장 적게 조사되었다. SNR은 채광창 차폐정도가 0%, 감도 S200, 농도 2.5일 때 25.2로 가장 우수하였고, 채광창 차폐정도가 25%, 감도 S800, 농도 -2.5일 때 SNR이 4.7로 가장 낮았다.

3차원 유한요소해석을 이용한 종자게형 진공 인터럽터의 특성고찰 (A Study of the Characteristics on the Vacuum Interrupter with Axial Magnetic Field Type using 3 Dimension Finite Element Analysis)

  • 하덕용;강형부
    • 한국전기전자재료학회논문지
    • /
    • 제15권5호
    • /
    • pp.460-467
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density on the vacuum interrupter with axial magnetic field type using 3 dimension finite element analysis. An axial magnetic field parallel to the current flow in the arc column can improve the current breaking capacity of vacuum interrupter by affecting the arc mode. The axial magnetic flux density on the contact electrode surface is analyzed by inputting external current as a function of the transient time for sine half wave. And it also is analyzed within the gap distance of the contact electrode. The peak value of current but is decreased with the descending current on the contact electrode surface and within the gap distance of the contact electrode. The residual magnetic field is generated on the contact electrode surface and within the gap distance in the instant of zero current, which is due to the influence of eddy currents. The phase shift due to eddy currents, defined as time difference between the maximum value of current and axial magnetic field, is about 1ms in the center point of gap distance.

고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구 (The Effect of Additives on the High Current Density Copper Electroplating)

  • 심진용;문윤성;허기수;구연수;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제18권1호
    • /
    • pp.29-33
    • /
    • 2011
  • 전류밀도는 전기도급법에서 생산성과 직접적인 연관이 있고, 생산성의 증가를 위해선 고전류밀도가 필요하다. 회전전극(RDE)의 회전 속도를 증가시키면 고유속을 얻을 수 있다. 유속 조절을 위해 회전전극과 원통형 회전 전극을 사용하였고, 전압과 전류의 관계를 알아보기 위해 정전류, 정전압 실험과 linear sweep voltammetry 실시하였다. 회전 전극의 회전 속도가 400 rpm이상 조건에서, 수소가 발생하지 않고 1000 A/$m^2$이상의 최대전류멸도가 가능하였다. $25^{\circ}C$$62^{\circ}C$ 조건에서 구리의 확산계수는 각각 $5.5{\times}10^6\;cm^2\;s^{-1}$$10.5{\times}10^6\;cm^2\;s^{-1}$로 계산되었다. 수소가 발생하지 않으면서 안정적으로 구리를 전착할 수 있는 조건은 -0.05 V (vs Ag/AgCl)이었다. 첨가제인 glue와 thiourea-를 넣음으로써 구리의 침상성장을 막을 수 있었다. 표면 거칠기는 UV-Vis Spectrophotometer를 아용하여 분석되었다. 600 nm 영역에서 반사도는 측정 되었고 표면 거철기가 개선될수록 표면 반사도가 증가하였다.

Comparison with Polarization Characteristic of Polymers

  • Choi, Chil-Nam;Yabg, Hyo-Kyung
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2001년도 가을 학술발표회 발표논문집
    • /
    • pp.188-190
    • /
    • 2001
  • We carried out to measure the variations of potential with current density polymers. The results were particularly examined to identify the influences on corrosion potential and corrosion rate of various factors including temperature and pH. The Tafel slope for anodic dissolution was determined by the polarization effect depending on these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum passive current density were designated as the relative corrosion sensitivity($I_{r}I_{f}$). The mass transfer coefficient value (${\alpha}$) was determined with the Tafel slope for anodic dissolution based on the polarization effect with optimum conditions.

  • PDF

Corrosion Characteristics of Amorphous Alloy Ribbon ($Fe_{70}Cr_5Si_{10}B_{15}$ and $Co_{70}Cr_5Si_{10}B_{15}$) in Hydrochloric Acid Aqueous Solution

  • Choi, Chil-Nam;Hyo, Kyung-Yang;Yang, Myung-Sun
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2001년도 정기총회 및 봄 학술발표회 초록집
    • /
    • pp.236-237
    • /
    • 2001
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves with amorphous $Fe_{70}Cr_5Si_{10}B_{15}$ and $Co_{70}Cr_5Si_{10}B_{15}$ alloy ribbon. The results were particularly examined to identify the influences of corrosion potential including various conditions such as hydrochloric acid, temperature, salt, pH, and oxygen. The optimum conditions were established with variations including temperature, salt, pH, oxygen, corrosion rate, and resistance of corrosion potential. The mass tranfer coefficient(${\alpha}$) value was determined with the Tafel's slope for the anodic dissolution based on the polarization effect with optimum conditions. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity($I_{r}/I_{f}$).

  • PDF

Analysis of activation, ohmic, and concentration losses in hydrogen fuelled PEM fuel cell

  • Rohan Kumar;K.A Subramanian
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.253-264
    • /
    • 2022
  • This paper deals with the effects of design (active area, current density, membrane conductivity) and operating parameters (temperature, relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The design parameter of a PEM fuel cell with the active area of the single cell considered in this study is 25 cm2 (5 × 5). The operating voltage and current density of the fuel cell were 0.7 V and 0.5 A/cm2 respectively. The variations of activation voltage, ohmic voltage, and concentration voltage with respect to current density are analyzed in detail. The membrane conductivity with variable relative humidity is also analyzed. The results show that the maximum activation overpotential of the fuel cell was 0.4358 V at 0.21 A/cm2 due to slow reaction kinetics. The calculated ohmic and concentrated overpotential in the fuel cell was 0.01395 V at 0.76 A/cm2 and 0.027 V at 1.46 A/cm2 respectively.

수직형 직렬 MOSFET 구조의 Emitter Switched Thyristor (An Emitter Switched Thyristor with vertical series MOSFET structure)

  • 김대원;김대종;성만영;강이구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.392-395
    • /
    • 2003
  • For the first time, the new dual trench gate Emitter Switched Thyristor is proposed for eliminating snap-back effect which leads to a lot of serious problems of device applications. Also, the parasitic thyristor that is inherent in the conventional EST is completely eliminated in the proposed EST structure, allowing higher maximum controllable current densities for ESTs. Moreover, the new dual trench gate allows homogenous current distribution throughout device and preserves the unique feature of the gate controlled current saturation of the thyristor current. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $354/{\S}^2$, respectively. But the proposed EST exhibits snap-back with the anode voltage and current density 0.93V and $58A/{\S}^2$, respectively. Saturation current density of the proposed EST at anode voltage 6.11V is $3797A/{\S}^2$. The characteristics of 700V forward blocking of the proposed EST obtained from two dimensional numerical simulations (MEDICI) is described and compared with that of the conventional EST.

  • PDF

Plasma Jet의 동축평행 자계에 의한 영향에 관한 연구 ( 1 ) (A Study on the Influence of Coaxial Parallel Magnetic Field upon Plasma Jet)

  • 전춘생
    • 전기의세계
    • /
    • 제22권2호
    • /
    • pp.57-69
    • /
    • 1973
  • The aim of this study was to investigate the behaviors of plasma jet under coaxial magnetic field in paralled with it for controlling optical characteristics and input power of plasma jet without impurity and instability of arc plasma column. Because the discharge characteristics of plasma jet were so distinctively different according to the existence or non-existence of magnetic field, the input power, luminous intensity of plasma jet and thermal efficiency were comparatively studied in respect of such variables as arc current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle, with the use of several materials which were different in diameter and length of nozzel. The results were as follows; 1) The voltage tends to show a drooping characteristic at law current and then rises gradually. The luminous intensity of plasma jet increases exponentially with arc current. 2) Arc voltage increases and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity increase in accordance with the quantity of argon flow. 4) At first step, arc voltage increases to maximum value with the growth of flux density and then tends to show a gradual decrease. Luminous intensity decreases with the growth flux density. 5) Arc voltage decreases as the constriction length of nozzle increases, maximum decrease is shown at the constriction length of 20(mm) and it increases beyond that value. The luminous intensity decreases as the constriction length grows. 6) Arc voltage and luminous in tensity increase with the growth of diameters of nozzle. 7) Thermal efficiency has values between 50% and 75%, being influenced by arc current, the quantity of argon flow, flux density, the length of electrode gap and the constriction length of nozzle.

  • PDF

3가크롬 도금욕에서 펄스도금조건이 전류효율에 미치는 영향 (The Effect of Pulse Plating on the Current Efficiency in Trivalent Chromium Bath)

  • 황경진;안종관;이만승;오영주
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.161-167
    • /
    • 2003
  • In order to investigate the effects of pulse plating conditions on the electrodeposition of trivalent chromium, electroplating experiments from bath with low concentration of trivalent chromium were performed. The variation of current efficiency of chromium electroplating with the electroplating conditions was explained. The maximum current efficiency of pulse plating is 6.4 times as high as that of direct plating at the same mean current density The nodular size increased with pulse plating time and the pulse frequency.