• Title/Summary/Keyword: Maximum Coupling

Search Result 510, Processing Time 0.031 seconds

Figures of Merit of (K,Na,Li)(Nb,Ta)O3 Ceramics with Various Li Contents for a Piezoelectric Energy Harvester

  • Go, Su Hwan;Kim, Dae Su;Han, Seung Ho;Kang, Hyung-Won;Lee, Hyeung-Gyu;Cheon, Chae Il
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.530-534
    • /
    • 2017
  • The figures of merit in the on-resonance and off-resonance conditions ($FOM_{on}$ and $FOM_{off}$) for the piezoelectric energy harvester (PEH) were measured and compared in $[(K_{0.485}Na_{0.515})_{1-X}Li_X](Nb_{0.99}Ta_{0.01})O_3$ (x = 0.04 ~ 0.09) (KNLNT) ceramics with various Li contents. The crystal structure of CuO-doped KNLNT ceramics changes from orthorhombic to tetragonal around the Li fraction of 0.065. The stable temperature range for the tetragonal phase widens to both higher and lower temperatures as Li is substituted. The piezoelectric charge constant ($d_{33}$), electromechanical coupling factor ($k_p$) and mechanical quality factor ($Q_m$) have maximum values at the Li fraction between 0.055 and 0.065 where the phase boundary lies between the orthorhombic and tetragonal phases. Both $FOM_{on}$ and $FOM_{off}$ have peak values around the phase boundary but the peak compositions are not exactly coincided. The optimal Li fraction in the KNLNT ceramic for a PEH application was found to be between 0.055 and 0.065.

Fluorene-Based Conjugated Copolymers Containing Hexyl-Thiophene Derivatives for Organic Thin Film Transistors

  • Kong, Ho-Youl;Chung, Dae-Sung;Kang, In-Nam;Lim, Eun-Hee;Jung, Young-Kwan;Park, Jong-Hwa;Park, Chan-Eon;Shim, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1945-1950
    • /
    • 2007
  • Two fluorene-based conjugated copolymers containing hexyl-thiophene derivatives, PF-1T and PF-4T, were synthesized via the palladium-catalyzed Suzuki coupling reaction. The number-average molecular weights (Mn) of PF-1T and PF-4T were found to be 19,100 and 13,200, respectively. These polymers were soluble in common organic solvents such as chloroform, chlorobenzene, toluene, etc. The UV-vis absorption maximum peaks of PF-1T and PF-4T in the film state were found to be 410 nm and 431 nm, respectively. Electrochemical characterization revealed that these polymers have low highest occupied molecular orbital (HOMO) levels, indicating good resistance against oxidative doping. Thin film transistor devices were fabricated using the top contact geometry. PF-1T showed much better thin-film transistor performance than PF-4T. A thin film of PF- 1T gave a saturation mobility of 0.001-0.003 cm2 V?1 s?1, an on/off ratio of 1.0 × 105, and a small threshold voltage of ?8.3 V. To support TFT performance, we carried out DSC, AFM, and XRD measurements.

3-Dimensional Hydrodynamic and Water Quality Change Simulation of Jingyang Reservoir Using EFDC-WASP (EFDC-WASP을 이용한 진양호의 3차원 수리.수질 변화 모의)

  • Jeong, Young-Won;Kim, Young-Do;Kim, Jeong-Kon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1079-1083
    • /
    • 2010
  • Due to summer rainfall is concentrated in the construction of the reservoir and the dam was inevitable. The character of these structures are different from the common rivers have been characterized. According to this problem, we need to adopt to this area with three dimensional model. Construction of dams for preservation of land, utilization of water resources, and exploitation of energy potential, which is a basic element of countries' development, is regarded as indispensable for peoples. In addtion, the development of the Nakdong River nutrient and pathogen Total Maximum Daily Loads (TMDL) required that the full range of pollutants, sources, and flow conditions, typical of heavily urbanized areas, be addressed for a single water body with 1-D simulation model (river) and 3-D simulation model (reservoir). The objective of this study is to simulate the applicability of reservoir with the coupling of 3-D hydrodynamic and water quality models to estimate water balance and pollutant loading in Namgang Dam(Jinyang reservoir).

  • PDF

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method (FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교)

  • Kim, Ki-Ha;Kim, Dong-Hyun;Kwak, Young-Seob;Kim, Su-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.

Design of a 900 MHz RFID Compact LTCC Package Reader Antenna Using Faraday Cage (Faraday Cage를 이용한 900 MHz RFID 소형 LTCC 패키지 리더 안테나의 설계)

  • Kim, Ho-Yong;Mun, Byung-In;Lim, Hyung-Jun;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.563-568
    • /
    • 2007
  • In this paper, the proposed package antenna, which is meander line structure with short pin, is miniaturized to realize RF-SoP at 900 MHz RFID band. The RFID BGA(Ball Grid Array) chip is put in a cavity of LTCC Layers. The coupling and cross talk, which are happen between BGA chip and proposed package antenna, are reduced by faraday cage, which consists of ground and via fences, is realized to enhance the isolation between BGA chip and antenna. The proposed antenna structure is focused on the package level antenna realization at low frequency band. The novel proposed package antenna size is $13mm{\times}9mm{\times}3.51mm$. The measured resonance frequency is 0.893 GHz. The impedance bandwidth is 9 MHz. The maximum gain of radiation pattern is -2.36 dBi.

Pharmacokinetics of Ethanol After Oral Administration of Aspartate-Containing Compositions (Aspartate함유 복합성분과 Ethanol의 약물동태학적 거동)

  • Kim, Tae-Wan;Lee, Beom-Jin;Choi, Han-Gon;Kim, Chong-Kook;Shin, Hee-Jong;Kim, Jung-Woo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.181-187
    • /
    • 1997
  • The purpose of this work was to investigate pharmacokinetics of alcohol as a function of dose and time of administration of ethanol. The pharmacokinetics of alcohol 15 min after and before oral administration of aspartate-containing compositions to rats were also evaluated. The retention time of acetaldehyde, alcohol and isopropyl alcohol an internal standard in gas chromatogram was 3.6, 6.0 and 10.5 min, respectively. The maximum concentration of alcohol $(C_{max})$ and area under the blood concentration (AUC) were significanly increased as a function of ethanol dose in a nonlinear fashion. The significant diurnal variation of alcohol pharmacokinetics was also noted, showing fast metabolism and elimination when given orally in the night time. When APAP was given after administration alcohol (1g/kg) to rats, AUC and $C_{max}$ were increased when compared to alcohol only. However, AUC and $C_{max}$ were decreased when aspartate or standard complex compositions containing aceaminophen (APAP, 250mg). sodium L-aspartate(25 mg), dl-methionine (125 mg) and anhydrous caffeine (25 mg) was orally given by coupling malate/asparate shuttle in hepatocyte. The blood alcohol concentration profiles between aspartate and standard complex compositions were similar when given before or after administration alcohol (1g/kg) to rats. No significant difference of administration sequence was observed. However, it was noted that AUC and $C_{max}$ of standard complex compositions given before alcohol administration were significantly lower when compared with alcohol only. Based on these findings, dose, time of administration and composition of drugs to improve alcohol metabolism and elimination were considered to be important in the pharmacokinetics of alcohol. The administration sequence of drug compositions and alcohol might be also considerd.

  • PDF

Rheological Properties of Polyurethane Modified with Polyorganosiloxane (Polyorganosiloxane 변성 폴리우레탄의 유변 특성)

  • 한정우;한미선;이상문;박태석;강두환
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.607-614
    • /
    • 2002
  • Polyorganosiloxane(HBPS) modified polyurethane (UMPS) was synthesized to improve weatherability in the polyurethane (ITPU) sealant and its rheological propoerty was investigated. It was found that the viscosity increased with increasing HBPS content in polyurethane and maximum viscosity was observed in UMPS having 70/30 ITPU/HBPS ratio. This was understood that the segregation of HBPS segment in UMPS chain has been developed. Further increasing of the content of HBPS resulted in the lowering of viscosity because of the flexibility of HBPS block segment in UMPS chain. It was also found that UMPS has more sensitive environmental dependency of viscosity than ITPU such as shear rate, humidity and temperature. In additions, UMPS having Si(O$CH_3$)$_3$ end group (TUMPS) by adding coupling agent up to 0.3 wt% resulted in the increase of viscosity by the acceleration of curing. But introducing more than 0.5wt% curing agent to TUMPS caused the lowering of viscosity because of less NCO group in TUMPS for the curing.

Synthesis of Novel Carbazole-based Blue Light-emitting Copolymers Containing (Diphenylene)vinylene Pendants (디페닐렌비닐렌 치환기를 가진 카바졸계 청색발광 공중합체 합성)

  • Kim, Woo Yeon;Yoon, Keun-Byoung
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.736-743
    • /
    • 2013
  • Novel carbazole based copolymers were synthesized by Suzuki coupling polymerization. (Diphenylene)vinylene and n-octyl was introduced to carbazole as pendants for reducing band gap and improving solubility, respectively. Thermal, photoluminescence and electro-luminescence of copolymers were studied for applying the emitting layer of polymer light emitting diode (PLED). Maximum UV-vis absorption and photoluminescence (PL) emission wavelength of copolymers showed 333~340 nm and 409~464 nm in solution state, respectively. The relative quantum yield using 9,10-diphenylanthracene as a reference was 25.8%. These copolymers exhibited high thermal stability ($T_d$ = $350^{\circ}C$) and good film forming ability. Good luminance was obtained at voltages lower than 8 V and the onset voltage was observed at 4.0 V.

Coupled solid and fluid mechanics simulation for estimating optimum injection pressure during reservoir CO2-EOR

  • Elyasi, Ayub;Goshtasbi, Kamran;Hashemolhosseini, Hamid;Barati, Sharif
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.37-57
    • /
    • 2016
  • Reservoir geomechanics can play an important role in hydrocarbon recovery mechanism. In $CO_2$-EOR process, reservoir geomechanics analysis is concerned with the simultaneous study of fluid flow and the mechanical response of the reservoir under $CO_2$ injection. Accurate prediction of geomechanical effects during $CO_2$ injection will assist in modeling the Carbon dioxide recovery process and making a better design of process and production equipment. This paper deals with the implementation of a program (FORTRAN 90 interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators, using a partial coupling algorithm. A geomechanics reservoir partially coupled approach is presented that allows to iteratively take the impact of geomechanics into account in the fluid flow calculations and therefore performs a better prediction of the process. The proposed approach is illustrated on a realistic field case. The reservoir geomechanics coupled models show that in the case of lower maximum bottom hole injection pressure, the cumulative oil production is more than other scenarios. Moreover at the high injection pressures, the production rates will not change with the injection bottom hole pressure variations. Also the FEM analysis of the reservoir showed that at $CO_2$ injection pressure of 11000 Psi the plastic strain has been occurred in the some parts of the reservoir and the related stress path show a critical behavior.