Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.6.11

Figures of Merit of (K,Na,Li)(Nb,Ta)O3 Ceramics with Various Li Contents for a Piezoelectric Energy Harvester  

Go, Su Hwan (Department of Materials Science and Engineering, Hoseo University)
Kim, Dae Su (Department of Materials Science and Engineering, Hoseo University)
Han, Seung Ho (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Kang, Hyung-Won (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Lee, Hyeung-Gyu (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Cheon, Chae Il (Department of Materials Science and Engineering, Hoseo University)
Publication Information
Abstract
The figures of merit in the on-resonance and off-resonance conditions ($FOM_{on}$ and $FOM_{off}$) for the piezoelectric energy harvester (PEH) were measured and compared in $[(K_{0.485}Na_{0.515})_{1-X}Li_X](Nb_{0.99}Ta_{0.01})O_3$ (x = 0.04 ~ 0.09) (KNLNT) ceramics with various Li contents. The crystal structure of CuO-doped KNLNT ceramics changes from orthorhombic to tetragonal around the Li fraction of 0.065. The stable temperature range for the tetragonal phase widens to both higher and lower temperatures as Li is substituted. The piezoelectric charge constant ($d_{33}$), electromechanical coupling factor ($k_p$) and mechanical quality factor ($Q_m$) have maximum values at the Li fraction between 0.055 and 0.065 where the phase boundary lies between the orthorhombic and tetragonal phases. Both $FOM_{on}$ and $FOM_{off}$ have peak values around the phase boundary but the peak compositions are not exactly coincided. The optimal Li fraction in the KNLNT ceramic for a PEH application was found to be between 0.055 and 0.065.
Keywords
Piezoelectric properties; Sintering; Energy harvester; Figure of merit; $(K,Na)NbO_3$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Klein, E. Hollenstein, D. Damjanovic, H. J. Trodahl, N. Setter, and M. Kuball, "A Study of the Phase Diagram of (K,Na,Li)$NbO_3$ Determined by Dielectric and Piezoelectric Measurements, and Raman Spectroscopy," J. Appl. Phys., 102 [1] 014112 (2007).   DOI
2 T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 111-24 (2007).
3 K. Wang, J.-F. Li, and N. Liu, "Piezoelectric Properties of Low-Temperature Sintered Li-Modified (Na, K)$NbO_3$ Lead-Free Ceramics," Appl. Phys. Lett., 93 [9] 092904 (2008).   DOI
4 J. B. Lim, S. Zhang, J.-H. Jeon, and T. R. Shrout, "(K,Na)$NbO_3$-Based Ceramics for Piezoelectric ''Hard'' Lead-Free Materials ," J. Am. Ceram. Soc., 93 [5] 1218-20 (2010).
5 R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu, and H. Zhou, "Low-Temperature Sintering of CuO-Doped 0.94$(K_{0.48}Na_{0.535})$ $NbO_3-0.06LiNbO_3$ Lead-Free Piezoelectric Ceramics," J. Am. Ceram. Soc., 93 [12] 4018-21 (2010).   DOI
6 J. H. Kim, J. S. Kim, S. H. Han, H.-W. Kang, H.-G. Lee, and C. I. Cheon, "Low-Temperature Sintering and Piezoelectric Properties of CuO-Doped (K,Na)$NbO_3$ Ceramics," Mater. Res. Bull., 96 [2] 121-25 (2017).   DOI
7 J. H. Kim, J. S. Kim, S. H. Han, H.-W. Kang, H.-G. Lee, and C. I. Cheon, "(K,Na)$NbO_3$-Based Ceramics with Excess Alkali Oxide for Piezoelectric Energy Harvester," Mater. Res. Bull., 42 [4] 5226-30 (2016).
8 J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013).   DOI
9 T. Kudo, T. Yazaki, F. Naito, and S. Sugaya, "Dielectric and Piezoelectric Properties of $Pb(Co_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ Solid Solution Ceramics," J. Am. Ceram. Soc., 53 [6] 326-28 (1970).   DOI
10 J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimurac, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015).   DOI
11 J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, and T. Granzow, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009).   DOI
12 T. Rodig, A. Schonecker, and G. Gerlach, "A Survey on Piezoelectric Ceramics for Generator Applications," J. Am. Ceram. Soc., 93 [4] 901-12 (2010).   DOI
13 S. Priya, "Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers," J. Electroceram., 19 [1] 165-82 (2007).
14 I.-T. Seo, C.-H. Choi, D. Song, M.-S. Jang, B.-Y. Kim, S. Nahm, Y.-S. Kim, T.-H. Sung, and H.-C. Song, "Piezoelectric Properties of Lead-free Piezoelectric Ceramics and Their Energy Harvester Characteristics," J. Am. Ceram. Soc., 96 [4] 1024-28 (2013).   DOI
15 C. D. Richards, M. J. Anderson, D. F. Bahr, and R. F. Richard, "Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component," J. Micromech. Microeng., 14 [5] 717-21 (2004).   DOI
16 M. Umeda, D. Nakamura, and S. Ueha, "Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator," Jpn. J. Appl. Phys., 35 [5B] 3267-73 (1996).   DOI
17 J. Wua, D. Xiao, Y. Wang, J. Zhu, P. Yu, and Y. Jiang, "Compositional Dependence of Phase Structure and Electrical Properties in $(K_{0.42}Na_{0.58})NbO_3-LiSbO_3$ Lead-Free Ceramics," J. Appl. Phys., 102 [11] 114113 (2007).   DOI
18 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [4] 84-7 (2004).   DOI
19 J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009).   DOI
20 Y. Guo, K. Kakimoto, and H. Ohsato, "$(Na_{0.5}K_{0.5})NbO_3-LiTaO_3 $Lead-Free Piezoelectric Ceramics," Mater. Lett., 59 241-44 (2005).   DOI
21 J. Wu, T. Peng, Y. Wang, D. Xiao, J. Zhu, Y. Jin, J. Zhu, P. Yu, L. Wu, and Y. Jiang, "Phase Structure and Electrical Properties of $(K_{0.48}Na_{0.52})(Nb_{0.95}Ta_{0.05})O_3-LiSbO_3 $ Lead-Free Piezoelectric Ceramics," J. Am. Ceram. Soc., 91 [1] 319-21 (2008).   DOI
22 D. Liu, H. Du, F. Tang, F. Luo, D. Zhu, and W. Zhou, "Effect of Heating Rate on the Structure Evolution of $(K_{0.5}Na_{0.5})NbO_3-LiNbO_3$ Lead-Free Piezoelectric Ceramics," J. Electroceram., 20 [2] 107-11 (2008).   DOI
23 Z.-Y. Shen, J.-F. Li, K. Wang, S. Xu, W. Jiang, and Q. Deng, "Electrical and Mechanical Properties of Fine-Grained Li/Ta-Modified (Na,K)$NbO_3$-Based Piezoceramics Prepared by Spark Plasma Sintering," J. Am. Ceram. Soc., 93 [5] 1378-83 (2010).