• Title/Summary/Keyword: Maximum Control Force

Search Result 348, Processing Time 0.047 seconds

Control and Evaluation of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6자유도 역감제시 장치의 제어 및 평가)

  • Yun, Jeong-Won;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.160-167
    • /
    • 2001
  • This paper presents control and evaluation of a new haptic device with a 6-DOF parallel mechanism for interfacing with virtual reality. This haptic device has low inertial, high bandwidth compactness, and high output force capability mainly due to of base-fixed motors. It has also wider orientation workspace mainly due to a RRR type spherical joint. A control method is presented with gravity compensation and with force feedback by an F/T sensor to compensate for the effects of unmodeled dynamics such as friction and inertia. Also, dynamic performance has been evaluated by experiments. for force characteristics such as maximum applicable force, static-friction force, minimum controllable force, and force bandwidth Virtual wall simulation with the developed haptic device has been demonstrated.

  • PDF

A Study on the Characteristics of Wave Forces on Artificial Reefs (착저식 인공어초에 작용하는 파력특성에 관한 연구)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.605-612
    • /
    • 1994
  • The methods to determine the hydrodynamic coefficients for the fixed type artificial reefs which were constructed to control ecological system in coastal waters are compared and discussed by model test results. To calculate the wave forces, least square method show good agreement with the experimental results and more stability than maximum force component method or Fourier decomposition method. This modified least square method of weighting the square of measured force turned out to be the most feasible method for maximum force. Using the feasible method, hydrodynamic characteristics for artificial reefs on uniform slopes offshore and breaking zone were studied. They were properly related to Keulegan-Carpenter's number and found larger than previous results. Wave force coefficients for artificial reefs around breaking zone were distributed from 1.5 to 2.5, and the mean value was 2.0. Drag force components were more in evidence than inertia force in maximum force which is important parameter to evaluate stability for high-permeability structures. A formula for the calculation of the maximum force for artificial reefs design is proposed, using structural dimension, water particle velocity and Keulegan-Carpenter's number.

  • PDF

Adhesive Force Control of Railway Rolling Stock Using Reference Slip Generator and Adaptive Sliding-mode Technique (기준 슬립 발생기 및 적응 슬라이딩 모드 기법을 이용한 철도차량 제동력 제어)

  • Lim, Tae-Hyeong;Kim, Seong-Soo;Choi, Jeong-Ju;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.56-61
    • /
    • 2007
  • In the braking of railway rolling stock, the slip that is the relative velocity between train body and its wheel affects the adhesive force which is connected to the braking force. The coefficient of the adhesive force changes in accordance with the slip and the condition of a rail road. Namely, its value increases upon the maximum on a rail condition, and there it declines conversely while the magnitude of slip keeps rising on. First, this paper introduced a reference slip generator so that can utilize maximum adhesive forces with a disturbance observer for estimating unmeasurable current adhesive forces which is as an input of the generator. And, an adaptive sliding-mode control system has been synthesized for minimizing the error between reference and current slip. Finally the effectiveness of the proposed control system is evaluated by computer simulation.

Force Limited Vibration Tests of Micro-Satellites (힘제한 방법을 이용한 소형 위성의 진동시험)

  • 김영기;김홍배;김경운;우성현;김성훈;문상무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.446-451
    • /
    • 2004
  • Over testing problems of satellites and theirs components have been issued due to their effects on satellite development cost and schedule. Force limited vibration tests were introduced as solution of the problems in 1980s. Over testing phenomena occurs due to the lack of similarity on interface impedance. Force limited vibration tests control interface force to simulate actual interface impedance. In this research, force limited vibration tests are applied on two satellites environmental tests. Force limits are calculated by using TDFS method and Semi-Empirical method. Four force sensors are employed to control interface force. The tests prove that force limited control reduced maximum interface acceleration in order of 3.

  • PDF

The Immediate Effects of Ankle Restriction Using an Elastic Band on Ground Reaction Force during a Golf Swing

  • Yi, Kyungock;Kim, OkJa
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.191-195
    • /
    • 2016
  • Purpose: The purpose of this study was to analyze the immediate effects of ankle restriction with an elastic band on ground reaction force during a golf swing. Method: There were five subjects who were teaching pros with an average golf score of 75. A force platform (9281B, Switzerland) was used. The independent variable was the presence of an elastic band. The dependent variables were three-dimensional ground reaction forces to analyze the transfer of momentum with the timing, control and coordination of the three forces. A paired t-test within subject repeated measure design was used via an SPSS 20.0. Results: Wearing an elastic band around one's ankles significantly makes shorter time differences between the moment of cross anterior / posterior forces and vertical force and median value of anterior / posterior forces during the backswing, between medial and lateral maximum and anterior / posterior force from the top of the back swing to the mid down swing, and creates an anterior / posterior maximum force. Conclusion: Wearing an elastic band around one's ankles affects control and coordination between three dimensional forces, and anterior force power according to each phase of the golf swing.

Distribution of Wind Force Coefficients on the Three-span Arched House (아치형 3연동하우스의 풍력계수 분포에 관한 연구)

  • 이현우;이석건
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.46-52
    • /
    • 1993
  • The wind pressure distributions were analyzed through the wind tunnel experiment to provide fundamental criteria for the structural design on the three-span arched house according to the wind directions. In order to investigate the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated from the experimental data. The results obtained are as follows : 1. The variation of the wind force with the wind directions on the side walls was the greatest at the upwind edge of the walls. The change of pressure from the positive to the negative on the side walls occurred at the wind direction of 30$^{\circ}$ in the first house and 60$^{\circ}$ in the third house. 2. The maximum negative wind force along the length of the roof appeared at the length ratio of 0-0.2, when the wind directions were 90$^{\circ}$ in the first house, 60$^{\circ}$ in the second house and 30$^{\circ}$ in the third house. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and the wind direction of 0.4 and 0$^{\circ}$ in the first house, 0.4-0.6 and 30$^{\circ}$ in the second house and 0.6 and 30$^{\circ}$ in the third house, respectively. 4. The maximum mean positive and negative wind forces occurred at the wind direction of 60$^{\circ}$ and 30$^{\circ}$, respectively, on the side walls of the first house, and the maximum mean negative wind force on the roof occurred at the wind direction of 30$^{\circ}$ in third house. 5. The maximum drag and lift forces occurred at the wind direction of 30$^{\circ}$, and the maximum lift force appeared in the third house. 6. The parts to be considered for the local wind forces were the edges of the walls, the edges of the x-direction of the roofs, and the locations of the width ratio of 0.4 of the first and third house and the center of the width of the second house for the y-direction of the roofs.

  • PDF

Control Method of Mobile Robots for Avoiding Slip and Turnover on Sloped Terrain Using a Gyro/Vision Sensor Module (Gyro/Vision Sensor Module을 이용한 주행 로봇의 미끄러짐 및 넘어짐 회피 제어 기법)

  • Lee Jeong-Hee;Park Jae-Byung;Lee Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.669-677
    • /
    • 2005
  • This acticle describes the control method of mobile robots for avoiding slip and turnover on sloped terrain. An inexpensive gyro/vision sensor module is suggested for obtaining the information of terrain at present and future. Using the terrain information and the robot state, the maximum limit velocity of the forward velocity of the robot is defined fur avoiding slip and turnover of the robot. Simultaneously the maximum value of the robot velocity is reflected to an operator in the form of reflective force on a forte feedback joystick. Consequently the operator can recognize the maximum velocity of the robot determined by the terrain information and the robot state. In this point of view, the inconsistency of the robot movement and the user's command caused by the limit velocity of the robot can be compensated by the reflective force. The experimenal results show the effectiveness of the suggested method.

Mathematical modeling and simulation of an intelligent arm-wrestling system (지능형 Arm-wrestling system의 수학적 모델과 시뮬레이션)

  • Son I.X.;Lee H.S.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.275-276
    • /
    • 2006
  • An intelligent arm-wrestling system is recently developed in our laboratory that is comprised of an arm-force generation mechanism and a control system that detects the maximum arm-force of a user in the early stage of the match, generates a different game scenario each time, and executes force feedback control to implement the scenario. This paper presents the mathematical model of the force control system of the intelligent arm-wrestling system, and some improvements of it via experimental frequency responses using a control signal analyzer.

  • PDF

Thrust Force Estimation using Flexible Neural Networks

  • Kim, Myeong-Hee;Shigeyasu Kawaji;Masaki Arao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.1-47
    • /
    • 2001
  • The drilling process has a great importance for the production technology due to its widerspread use in the manufacturing industry. In order to enhance a maximum production rate and prevent the drill from the damage, it is important to monitor and control the drilling system. Thrust force and cutting torque are the main output variables in the design of drilling control systems. In this paper, an alternative estimation method of thrust force by using flexible neural networks is proposed. Flexible neural network uses the sigmoid activation function with adjustable parameter in order to enhance the approximation accuracy ...

  • PDF

OCCLUSAL FORCE AND EMG CHANGE OF MANDIBULAR FRACTURE (악골 골절에서 술 후 교합압 및 근전도 변화)

  • Choi, Yong-Kwan;Han, Se-Jin;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.293-299
    • /
    • 2008
  • Bite force is created by the force of adjacent teeth accompanied with tension of masticatory muscle. The bite force value is greater in male than in female and ha maximum value at first molar. Masseter muscle is associated with bite force and during muscle contraction the electric signal is expressed in EMG form. The aim of the study is to assess recovery time for masseter muscle activity and according to each part of bite force after open reduction with internal fixation when mandibular angle fracture and subcondyle fracture occurred. And to determine the appropriate period for mandibular fracture patients to have normal masticatory activity. 30 patients with normal bite condition was selected for control group and from April, 2007 to September, 2007, 20 patients who visited our department of oral and maxillofacial surgery of Dankook University, were selected for the study and were diagnosed as mandibular angle fracture and subcondyle fracture. For control group, the bite force for incisors, canine, premolars and molars and activity of the masseter muscle was measured and compared for 1, 2, 3, 4, 6 and 8 weeks. That was divided as fracture side and normal side. Mann-Whitney U test was performed for significant difference and the following result was obtained. 1. The maximum voluntary bite force for incisors, canine, premolars and molars portion were 0.113 kN, 0.182kN, 0.295kN and 0.486kN and the masseter muscle activity was 0.192 volts in the control group. 2. The maximum bite force at fracture side was recovered by 4th weeks for incisors, 6th weeks for canine and premolars and 8th weeks for molars and the masseter muscle activity was recovered by 6th weeks in the experimental group. 2. The maximum bite force at normal side was recovered by 4th weeks for incisors, 6th weeks for canine, premolars and molars and the masseter muscle activity was recovered by 3rd weeks in the experimental group. 3. The method for internal fixation by 2.0mm miniplates at both superior and inferior border had no complications according for twenty patients and had a satisfactory recovery. According to the result, patient with mandibular angle fracture and subcondyle fracture, 8 weeks was required for bite force recovery. Therefore, patients with open reduction and internal fixation under general anesthesis, it can be assumed that 8 weeks was needed after operation in order to have normal bite force and masseter muscle recovery.