• Title/Summary/Keyword: Maximization

Search Result 1,103, Processing Time 0.028 seconds

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF

A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

  • Ghasemi, Jahan B.;Zolfonoun, Ehsan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1527-1535
    • /
    • 2012
  • Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms.

Adaptive Channel Normalization Based on Infomax Algorithm for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.300-304
    • /
    • 2007
  • This paper proposes a new data-driven method for high-pass approaches, which suppresses slow-varying noise components. Conventional high-pass approaches are based on the idea of decorrelating the feature vector sequence, and are trying for adaptability to various conditions. The proposed method is based on temporal local decorrelation using the information-maximization theory for each utterance. This is performed on an utterance-by-utterance basis, which provides an adaptive channel normalization filter for each condition. The performance of the proposed method is evaluated by isolated-word recognition experiments with channel distortion. Experimental results show that the proposed method yields outstanding improvement for channel-distorted speech recognition.

  • PDF

Energy-Aware System Lifetime Maximization Algorithm in Multi-Hop Sensor Network (멀티홉 센서 네트워크에서 에너지 상황을 고려한 시스템 수명 최대화 알고리즘)

  • Kim, Tae-Rim;Kim, Bum-Su;Park, Hwa-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.339-345
    • /
    • 2013
  • This paper addresses the system lifetime maximization algorithm in multi-hop sensor network system. A multi-hop sensor network consists of many battery-driven sensor nodes that collaborate with each other to gather, process, and communicate information using wireless communications. As sensor-driven applications become increasingly integrated into our lives, we propose a energy-aware scheme where each sensor node transmits informative data with adaptive data rate to minimize system energy consumption. We show the optimal data rate to maximize the system lifetime in terms of remaining system energy. Furthermore, the proposed algorithm experimentally shows longer system lifetime in comparison with greedy algorithm.

Iterative Channel Estimation for Higher Order Modulated STBC-OFDM Systems with Reduced Complexity

  • Basturk, Ilhan;Ozbek, Berna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2446-2462
    • /
    • 2016
  • In this paper, a frequency domain Expectation-Maximization (EM)-based channel estimation algorithm for Space Time Block Coded-Orthogonal Frequency Division Multiplexing (STBC-OFDM) systems is investigated to support higher data rate applications in wireless communications. The computational complexity of the frequency domain EM-based channel estimation is increased when higher order constellations are used because of the ascending size of the search set space. Thus, a search set reduction algorithm is proposed to decrease the complexity without sacrificing the system performance. The performance results of the proposed algorithm is obtained in terms of Bit Error Rate (BER) and Mean Square Error (MSE) for 16QAM and 64QAM modulation schemes.

A Study of Thrust Maximization Using Analytical Method Considering Slot Effect in Pemanent Magnet Linear Synchronous Motor (슬롯효과를 고려한 해석적인 방법에 의한 PMLSM의 출력 최대화에 관한 연구)

  • Lee Dong-Yeup;Kim Duk-Hyun;Kim Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.323-328
    • /
    • 2005
  • This paper is proposed maximum thrust design of slotted permanent magnet linear synchronous motor(PMLSM) using surface harmonic method(SHM) considering slot effect. The genetic a1gorithm is used for optimization. The functional are selected the maximum thrust and the minimum detent force. This time. design parameters are set as permanent magnet(PM) width. PM height and slot width. Thrust is increased from 272[N] to 295[N] and detent force is decreased from 5[N] to 2.43[N] greatly in optimum design. Therefore, thrust ripple isn't generating almost. Also, the results of 2D EMC considering slot-effect are compared with ones of experimental and finite element analysis..

Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm (EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF

The Application of the Spectral Similarity Scale Algorithm and Expectation-Maximization for Unsupervised Change Detection using Hyperspectral Image (하이퍼스펙트럴 영상의 무감독 변화탐지를 위한 SSS 알고리즘과 기대최대화 기법의 적용)

  • Kim, Yong-Hyun;Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.139-144
    • /
    • 2007
  • Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.

  • PDF