
This paper proposes a new data-driven method for 
high-pass approaches, which suppresses slow-varying 
noise components. Conventional high-pass approaches are 
based on the idea of decorrelating the feature vector 
sequence, and are trying for adaptability to various 
conditions. The proposed method is based on temporal 
local decorrelation using the information-maximization 
theory for each utterance. This is performed on an 
utterance-by-utterance basis, which provides an adaptive 
channel normalization filter for each condition. The 
performance of the proposed method is evaluated by 
isolated-word recognition experiments with channel 
distortion. Experimental results show that the proposed 
method yields outstanding improvement for channel-
distorted speech recognition. 
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I. Introduction 

The performance of speech recognition systems has been 
improved dramatically in recent years. However, it is degraded 
severely in real-world applications, which results in a mismatch 
between training and testing conditions. The control of 
different acoustic environments is very difficult, and even 
identical training and testing condition cannot guarantee a 
similar performance to the training and testing condition of 
clean speech when the speech signal is distorted by an 
unknown channel. In order to solve this problem, speech 
recognition methods in adverse conditions have been widely 
studied, and they can be classified into the following three 
categories. First, inherently robust feature parameters of the 
speech signal are used, such as auditory models and high-pass 
approaches. Second, a data compensation method is used to 
recover clean speech from corrupted speech in the feature 
domain. Finally, model compensation techniques modify the 
model parameters of the recognizer using noise estimations. 

 In the above methods, one notable technique is the high-
pass approach, which reduces temporal slow-varying noise 
components in the feature domain. Hermansky and Morgan 
proposed relative spectral (RASTA) processing to cope with 
convolution noise [1], and Hirsch and others used a first-order 
high-pass filter to reduce the effect of various channel 
conditions [2]. The high-pass approaches do not require a prior 
knowledge of testing environments and they suppress slowly 
varying components of the feature sequence corrupted by 
noise; therefore, they are more attractive in practical systems 
than other compensation methods, which have some 
difficulties in estimating channel characteristics in real 
environments. They intrinsically cause local decorrelation of 
the feature sequence [3] and provide an alternative which 
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models some temporal properties of human auditory 
processing [1]. Although high-pass approaches are attractive 
for corrupted speech recognition, conventional methods have 
some problems. The RASTA and Hirsch filters are specific to a 
given task, and do not provide an adaptive filter for the 
condition of each utterance. 

In this paper, we propose a new data-driven method to 
design RASTA-like filters. By performing a blind decorrelation 
process of the feature sequence, the proposed method can 
remove slow-varying noise components without long-term 
statistics and yield a suitable filter for the distorted state of each 
utterance. This decorrelation is expected to satisfy to some 
degree the independence assumption of the popular recognizer 
based on the hidden Markov model (HMM). Our decorrelation 
filter has been developed as a finite impulse response (FIR) 
filter with the information maximization algorithm used in 
blind signal separation [4], and it performs some envelope 
differentiation according to the tap size of the filter. Therefore, 
the proposed filter results in a temporally relative spectrum like 
the RASTA filter and can be a good solution for the 
adaptability of the RASTA filter. Speaker-independent isolated-
word recognition experiments were performed to evaluate the 
performance of the proposed method. Experimental results 
showed that the proposed method outperforms conventional 
methods under severe channel-distorted conditions. 

II. Information-Maximization (Infomax) Algorithm 

Most channel distortions show up as slow-varying 
perturbations which introduce temporal dependencies in the 
feature domain. Thus, by deriving independence from the 
corrupted feature sequence, one can obtain a feature 
representation from which the channel distortion is effectively 
removed. This is our basic principle in presenting an alternative 
to high-pass approaches. It is realized as a decorrelation filter to 
remove statistical dependencies using the information-
maximization algorithm, which maximizes the joint entropy of 
the feature sequence. Although the correct measure of 
statistical dependency is the mutual information, maximizing 
the joint entropy is computationally more efficient than 
minimizing the mutual information [5]. In addition, for super-
Gaussian signals such as speech signals, the entropy 
maximization can always minimize the mutual information [4]. 

When input sequence Y is passes through invertible 
monotonic function g, the probability density function (PDF) 
of output sequence Z is represented in [6] as 
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where ,/)( YYgg ∂∂=′ and the joint entropy H(Z) is defined 
as 
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As the definition of entropy, H(Z) becomes maximized when 
f(Z) is a uniform distribution, that is, when g  ́and f(Y) match. 
Therefore, maximizing the entropy is transforming an input 
sequence so that g  ́and f(Y) have identical distributions. This 
can be considered an unsupervised learning process and can be 
realized as blind filtering as shown in Fig. 1. In Fig. 1, g is 
given as a basis of the cumulative density function of the input 
feature sequence, and linear filter W is learned in order to 
match the PDF of sequence U to g .́ Non-linear function g is 
mainly based on the sigmoid function and can lead to higher-
order moments as well as second-order moments for the 
decorrelation object. Additionally, the invertible property of g 
enables the maximization of H(U) through the maximization of 
H(Z). Therefore, the decorrelated feature sequence U* is 
obtained from linear filter W*, which maximizes H(Z). 

III. Adaptive Blind Decorrelation Filtering 

1. Environmental Model 

Most acoustic features are based on the log-spectral domain. 
In this domain, an environmental model for distorted speech is 
represented as 

),()()( wHwXwY +=              (3)  

where X(w), H(w), and Y(w) denote the log spectra of clean 
speech, channel distortion, and distorted speech, respectively. 
This relation shows that the channel distortion is an additive 
term in a particular segment of short-time analysis and its 
temporal characteristic can be approximated to a bias when the 
channel is slowly varied. Subsequently, the proposed 
decorrelation filter subtracts the effect of channel distortion in 
the log-spectral domain and normalizes an unknown channel 
from the viewpoint of the linear-spectral domain. 
 

 

Fig. 1. Block diagram performing blind decorrelation based on an 
information-maximization approach. 
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2. Designing the Blind Decorrelation Filter 

In this section, we present the procedure from which the 
design of the filter which performs a temporal blind 
decorrelation is derived. The filter is a kind of unsupervised 
adaptive high-pass filter using the information-maximization 
algorithm. It is realized as an FIR filter which adapts to each 
utterance. While an FIR filter requires more coefficients than 
an infinite impulse response (IIR) filter, the derivation 
procedure for coefficients of the FIR filter is much simpler. 

In Fig. 1, after FIR filtering of the distorted input feature 
vector sequence, the distortion-removed sequence U(t) is 
represented as 
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where t is a frame index, and wk and K denote the coefficient 
and order of the filter W. An object of information-
maximization criterion Z(t) is given by 
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The algorithm is to maximize the joint entropy H(Z) 
represented as 
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with respect to filter coefficient wk. Only the first term of (6) is 
considered because the second term is not affected by the 
change of wk. 

By taking the gradient of the first term, the gradient descent 
deviation for wk is derived as 
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where Z΄(t) indicates the partial derivative of Z(t) with respect 
to Y(t), and its gradient for wk is obtained as follows: 
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Then, according to the gradient descent rule, wk is iteratively 
updated by 
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where j is an iteration index, and η denotes a learning rate. We 

apply the same filter to all the dimensions of the feature vector 
despite different aspects, and I denotes the unit vector to obtain 
scalar coefficients. 

Now, for a final update rule of filter coefficients, the function  
g΄(U(t)) is defined. According to the principle of entropy 
maximization, it should have the form which can be matched 
with the PDF of the acoustic feature sequence. In this paper, the 
activation function g΄(U(t)) is assumed to be a Gaussian 
function, and the final learning rules for wk are given by 
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Since the PDF of the input utterance is changed by current 
distortion conditions, the filter coefficients are adapted to each 
utterance on the defined activation function. The final 
coefficients are obtained when the deviation of (10) falls below 
an arbitrary threshold, and the final feature sequence is derived 
from (4) using the final coefficients. 

IV. Isolated Word Recognition Experiments 

In our experiments, the vocabulary consisted of 75 
phonetically balanced Korean words which are mutually 
confusable, and the database consisted of 6750 words spoken 
by 90 male speakers in a quiet room. The utterances of 68 
speakers were used to form the training data, and those of the 
other 22 speakers were used for evaluation. Each utterance was 
low-pass filtered with a cut-off frequency of 7.2 kHz and was 
sampled at 16 kHz using a 16-bit A/D converter. The distorted 
speech data for evaluation was generated by applying the filter 
used in [1] to the clean speech. 

Feature vectors were extracted on 20 ms speech segments 
every 10 ms, and each frame consisted of 23 mel-scaled filter-
bank energies. Then, filter-bank energies were scaled 
logarithmically, and 12 mel-frequency cepstral coefficients 
(MFCCs) were extracted by taking a discrete cosine transform 
(DCT). The proposed filter was applied to two situations. In the 
first case, the proposed filter was applied to the log filter-bank 
energies, which are physically meaningful quantities for the 
environmental model of (3). In the other case, it was applied to 
the compact MFCCs obtained from log filter-bank energies in 
order to make the proposed method computationally efficient. 

An acoustic model was trained with clean speech, and the 
triphone was chosen as the basic unit. All the corresponding 
271 triphones in the vocabulary were used. Each triphone was 
modeled by a three-state left-to-right continuous-density 
hidden Markov model (CDHMM), and one Gaussian mixture 
with diagonal covariance matrix was used to represent the 
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distribution of each state. 
In the proposed filter, the learning rate was 0.0003, and the 

average number of iterations and the threshold for converging 
were 32 and 0.0001, respectively. The order of the 
decorrelation filter was 9. The time-span related to the temporal 
correlation among successive feature vectors was between 30 
and 90 ms [7], and the order of 9 corresponds to a 90 ms time-
span. Note that, while the feature’s dynamic range in the 
stationary regions is decreased after decorrelation filtering, its 
dynamic range in the transition regions is relatively enhanced. 
This is commonly shown in high-pass approaches and 
indicates explicitly that a context-dependent acoustic model is 
required for them. 

Table 1 shows the performance of filtering in log filter-bank 
energies. As popular methods in the log-spectral domain, the 
RASTA [1] and Hirsch filters [2] were evaluated for 
comparison with the proposed method. The proposed filter 
significantly enhanced recognition performance and 
outperformed conventional methods. 
 

Table 1. Word correction rate (%) for filtering in log filter-bank 
energies.                                        

(%)

No filtering Filtering 

MFCCs RASTA filter Hirsch filter Proposed filter

69.4 95.9 96.4 98.1 

Table 2. Word correction rate (%) for filtering in MFCCs. 
                                                         (%)

No filtering Filtering 

MFCCs CMVN 
RASTA 

filter 
Hirsch 
filter 

Proposed 
filter 

69.4 92.3 95.6 96.5 98.0 

 

  Table 2 represents the recognition rate for filtering in 
MFCCs. The cepstral mean and variance normalization 
(CMVN) was also evaluated as a normalization technique in 
the cepstral domain [8]. Results show that the proposed 
method works well if the channel distortion is modeled as an 
additive term regardless of feature representation. For more 
robustness, the proposed method may be combined with the 
frequency filtering approach [9]. Moreover, in the cepstral 
domain, the proposed filter yielded better performance than 
other filters. 

V. Conclusion 

In this paper, we proposed a new channel normalization 
method based on the high-pass approach which de-emphasizes 

slow-varying noise perturbations in the feature sequence. The 
proposed method is based on the local decorrelation of the 
feature sequence. It was developed as an FIR filter for which 
the coefficients are learned using the information-maximization 
theory. The method provides a high-pass filter adapted to the 
noisy condition of each utterance, and presents a new method 
for the data-driven design of a RASTA-like filter. The 
experimental results demonstrate that the adaptability of the 
proposed method enables improved performance. 
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