• 제목/요약/키워드: Maximally Stable Region

검색결과 12건 처리시간 0.028초

MSER(Maximally Stable Extremal Regions)기반 위성영상에서의 관심객체 검출기법 (A Method to Detect Object of Interest from Satellite Imagery based on MSER(Maximally Stable Extremal Regions))

  • 백인혜
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.510-516
    • /
    • 2015
  • This paper describes an approach to detect interesting objects using satellite images. This paper focuses on the interesting objects that have common special patterns but do not have identical shapes and sizes. The previous technologies are still insufficient for automatic finding of the interesting objects based on operation of special pattern analysis. In order to overcome the circumstances, this paper proposes a methodology to obtain the special patterns of interesting objects considering their common features and their related characteristics. This paper applies MSER(Maximally Stable Extremal Regions) for the region detection and corner detector in order to extract the features of the interesting object. This paper conducts a case study and obtains the experimental results of the case study, which is efficient in reducing processing time and efforts comparing to the previous manual searching.

Efficient Detection of Direction Indicators on Road Surfaces in Car Black-Box for Supporting Safe Driving

  • Kim, Jongbae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.123-129
    • /
    • 2015
  • This paper proposes an efficient method to detect direction indicators on road surfaces to support drivers in driving safely using the Simulink model. In the proposed method, the ROIs are detected using the detection method of maximally stable extremal regions (MSER), and the road indicator regions are detected using the speeded up robust features (SURF) matching method for the corresponding point matching of the detected ROIs and the road indicator templates. Experiments on various road satiations show that the processing time of about 0.32 sec per frame was required, and a detection rate of 91% was achieved.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구 (Autonomous Battle Tank Detection and Aiming Point Search Using Imagery)

  • 김종환;정치정;허미라
    • 한국시뮬레이션학회논문지
    • /
    • 제27권2호
    • /
    • pp.1-10
    • /
    • 2018
  • 본 논문은 지상무인전투체계 중의 하나인 무인경전투차량이 RGB 영상정보를 기초로 스스로 전차를 탐지하고 조준점을 산출하는 지능형 표적획득/처리기술의 기초연구이다. 무인 경전투 차량이 전장에서 적 전차와 조우 시, 적 전차를 자율적으로 탐지하고 스스로 조준하는 방법을 개발하기 위해, 영상정보로부터 전차의 주요특징을 식별 및 추출하고, Maximally stable extremal regions, 중간값 필터, k평균 클러스터링 그리고 Morphological filtering의 영상처리기법 및 인공지능 알고리즘을 통해 전차의 외형정보를 추출 및 분석하였으며, 식별된 전차 외형정보를 벡터화하여 전차의 중앙을 지향하는 조준점을 산출하였다. 또한, 본 연구의 성능을 측정하기 위해 선진국들의 주력전차의 영상정보를 수집 및 분석하였고, 제안한 방법의 객관적인 전차탐지 성능은 정확도 91.6%, 정밀도 90.4%, 재현율 85.8% 그리고 F-measure 88.1%의 결과를 보여주었다. 본 연구가 무인전투체계의 지능형 표적획득/처리기술 연구개발에 도움이 되기를 기대한다.

문자 영역 검출과 다운샘플링을 이용한 잡음에 강인한 문서 영상 이진화 (Noise Robust Document Image Binarization using Text Region Detection and Down Sampli)

  • 정진욱;전경구
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.843-852
    • /
    • 2015
  • Binarization of document images is a critical pre-processing step required for character recognition. Even though various research efforts have been devoted, the quality of binarization results largely depends on the noise amount and condition of images. We propose a new binarization method that combines Maximally Stable External Region(MSER) with down-sampling. Particularly, we propose to apply different threshold values for character regions, which turns out to be effective in reducing noise. Through a set of experiments on test images, we confirmed that the proposed method was superior to existing methods in reducing noise, while the increase of execution time is limited.

실시간 글자 인식을 위한 안드로이드 기반의 글자 영역 추출 기술 (A text region extraction algorithm based on Android for real-time text recognition)

  • 이규철;이상용;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.194-196
    • /
    • 2016
  • 본 논문에서는 안드로이드 환경에서 글자 인식을 위한 전처리 과정으로 입력 영상에서 글자 영역만을 추출하는 기법을 제안한다. 대부분의 글자 인식 어플리케이션에서 글자를 인식하는 방법은 RoI(Region of Interest)에 인식하려는 글자를 위치시켜 놓고 사용자가 촬영함으로써 진행된다. 하지만 촬영된 영상 그대로를 인식에 사용하기 때문에 잡음 및 글자가 아닌 영역들을 글자로 인식하는 문제 등으로 인하여 인식률이 현저히 떨어진다. 제안하는 기법에서는 MSER(Maximally Stable Extremal Regions) 기법을 통해 각각의 글자를 추출한 후, 글자의 특성을 이용하여 글자 영역만을 추출한다. 기법의 성능 평가는 무료 OCR(Optical Character Recognition) 엔진인 Tesseract-OCR을 통해 글자 인식률을 비교하였으며, 제안하는 기법을 적용한 글자 인식 시스템이 적용하지 않은 시스템보다 글자의 인식률이 향상되는 것을 확인하였다.

  • PDF

MSER을 이용한 다중 스케일 영상 분할과 응용 (Multi-scale Image Segmentation Using MSER and its Application)

  • 이진선;오일석
    • 한국콘텐츠학회논문지
    • /
    • 제14권3호
    • /
    • pp.11-21
    • /
    • 2014
  • 다중 스케일 영상 분할은 영상 스타일링과 의료진단과 같은 여러 응용에서 매우 중요하다. 이 논문은 다중 스케일 구조를 확보하며 안정적이고 효율적인 MSER에 기반을 둔 새로운 알고리즘을 제안한다. 이 알고리즘은 영상에서 MSER를 수집한 후, 이것들을 특정한 순서대로 영상에 다시 그려 넣음으로써 영상을 분할한다. 영상 경계를 평활화하고 잡음을 제거하기 위한 계층적 모폴로지 연산을 제안한다. 알고리즘의 다중 스케일 특성을 보이기 위해, 여러 종류의 상세 단계 제어의 효과를 영상 스타일링에 적용한다. 제안한 기법은 이러한 효과를 시간이 많이 걸리는 다중 가우시언 평활화없이 수행한다. 분할 품질과 계산 시간 측면에서 민쉬프트-기반 Edison 시스템과 비교 결과를 제시한다.

자연 이미지에서 명암차이를 이용한 MSER 기반의 문자 검출 기법 (MSER-based Character detection using contrast differences in natural images)

  • 김준혁;이상훈;이강성;김기봉
    • 한국융합학회논문지
    • /
    • 제10권5호
    • /
    • pp.27-34
    • /
    • 2019
  • 본 논문에서는 문자 영역의 패턴을 분석하여 배경 영역을 제거하는 방법을 제안하였다. 명암이 일정한 영역을 구분하는 MSER(Maximally Stable External Regions)방법의 문자 검출에서는 배경 영역이 포함되어 검출되었다. 이러한 문제점을 해결하기 위해 자연 이미지에서 MSER 방법을 사용하여 명암 값이 차이가 나는 영역과 차이가 나지 않는 영역 즉 문자 영역과 배경 영역을 구해 변화율을 계산하여 배경을 제거하였다. 그러나 배경이 제거된 이미지에서 일부 제거되지 않는 배경 영역이 생겨 LBP(Local Binary Patterns)방법을 사용하여 이미지에서 균일한 값을 갖는 영역을 문자 영역이라고 판단하고 문자를 검출하였다. 실험 데이터는 배경이 단순한 이미지, 문자가 정면으로 구성된 이미지, 문자가 기울어진 이미지 등의 다양한 자연 이미지를 실험하였다. 제안하는 방법을 기존의 MSER, MSER+LBP 방법의 문자 검출 방법과 비교하였을 때 약 1.73%로 높은 검출률을 보였다.

어파인 변환에 불변하는 지역 검출기에 대한 특징 기술자의 성능 평가 (Performance Evaluation of Local Descriptors for Affine Invariant Region Detector)

  • 이만희;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 하계학술대회
    • /
    • pp.181-182
    • /
    • 2014
  • 본 논문에서는 어파인(affine) 변환에 불변하는 지역 검출기에 대하여 다양한 기술자의 성능을 비교하였다. 지난 수 년간 다양한 특징 기술자들이 연구되어 왔고, 이러한 특징 기술자들은 각각의 목적에 따라 상이한 특성을 갖고 있기 때문에 동일한 조건에서 다양한 기술자들의 성능을 비교하는 연구가 필요하다. 그러나 어파인 변환에 불변하는 지역 검출기에 대해 최적의 특징 기술자를 찾는 연구는 미흡한 실정이다. 따라서 본 논문에서는 지역적인 패치 기반의 특징 기술자뿐만 아니라 바이너리 기술자와 최근에 제안된 기술자들의 성능을 비교하였다. 제안하는 실험에서는 MSER (maximally stable extremal regions) 검출기를 이용하여 어파인 변환에 불변하는 지역을 검출하였고, 영상 확대 및 축소, 회전, 시점 변환 및 변형 가능한 물체에 대하여 각각 기술자의 성능을 비교하였다.

  • PDF

자연영상에서 문자의 형태 분석을 이용한 문자영역 추출에 관한 연구 (A Study on Extraction of text region using shape analysis of text in natural scene image)

  • 양재호;한현호;김기봉;이상훈
    • 한국융합학회논문지
    • /
    • 제9권11호
    • /
    • pp.61-68
    • /
    • 2018
  • 본 논문에서는 일상에서 획득할 수 있는 자연 영상에서 문자를 검출하기 위해 영상 개선 및 문자의 형태를 분석하여 문자를 검출하는 방법을 제안한다. 제안하는 방법은 자연 영상에서 문자로 인식될 영역의 검출률을 향상시키기 위해 객체부분의 경계를 언샤프 마스크를 사용하여 강조하였다. 향상된 객체의 경계 부분을 이용하여 영상의 문자 후보영역을 MSER(Maximally Stable Extermal Regions)을 이용하여 검출하였다. 검출된 문자 후보영역에서 실제 문자로 판단될 영역을 검출하기 위해 각 영역들의 형태를 분석하여 글자의 특성을 갖는 영역외의 비 문자영역을 제거하여 실제 문자영역 검출률을 높였다. 본 논문의 정량적 평가를 위해 문자 영역의 검출률과 정확도를 이용하여 기존의 방법들과 비교하였다. 실험결과 기존의 문자 검출 방법보다 제안하는 방법이 비교적 높은 문자영역의 검출률 및 정확도를 보였다.