• 제목/요약/키워드: MaxENT

검색결과 84건 처리시간 0.026초

Prediction of potential habitats and distribution of the marine invasive sea squirt, Herdmania momus

  • Park, Ju-Un;Lee, Taekjun;Kim, Dong Gun;Shin, Sook
    • 환경생물
    • /
    • 제38권1호
    • /
    • pp.179-188
    • /
    • 2020
  • The influx of marine exotic and alien species is disrupting marine ecosystems and aquaculture. Herdmania momus, reported as an invasive species, is distributed all along the coast of Jeju Island and has been confirmed to be distributed and spread to Busan. The potential habitats and distribution of H. momus were estimated using the maximum entropy (MaxEnt) model, quantum geographic information system (QGIS), and Bio-ocean rasters for analysis of climate and environment(Bio-ORACLE), which can predict the distribution and spread based only on species occurrence data using species distribution model (SDM). Temperature and salinity were selected as environmental variables based on previous literature. Additionally, two different representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) were set up to estimate future and potential habitats owing to climate change. The prediction of potential habitats and distribution for H. momus using MaxEnt confirmed maximum temperature as the highest contributor(77.1%), and mean salinity, the lowest (0%). And the potential habitats and distribution of H. momus were the highest on Jeju Island, and no potential habitat or distribution was seen in the Yellow Sea. Different RCP scenarios showed that at RCP 4.5, H. momus would be distributed along the coast of Jeju Island in the year 2050 and that the distribution would expand to parts of the Korea Strait by the year 2100. RCP 8.5, the distribution in 2050 is predicted to be similar to that at RCP 4.5; however, by 2100, the distribution is predicted to expand to parts of the Korea Strait and the East Sea. This study can be utilized as basic data to effectively control the ecological injuries by H. momus by predicting its spread and distribution both at present and in the future.

MaxEnt 모형을 이용한 기후변화에 따른 산사태 발생가능성 예측 (Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model)

  • 김호걸;이동근;모용원;길승호;박찬;이수재
    • 환경영향평가
    • /
    • 제22권1호
    • /
    • pp.39-50
    • /
    • 2013
  • Occurrence of landslides has been increasing due to extreme weather events(e.g. heavy rainfall, torrential rains) by climate change. Pyeongchang, Korea had seriously been damaged by landslides caused by a typhoon, Ewiniar in 2006. Moreover, the frequency and intensity of landslides are increasing in summer due to torrential rain. Therefore, risk assessment and adaptation measure is urgently needed to build resilience. To support landslide adaptation measures, this study predicted landslides occurrence using MaxEnt model and suggested susceptibility map of landslides. Precipitation data of RCP 8.5 Climate change scenarios were used to analyze an impact of increase in rainfall in the future. In 2050 and 2090, the probability of landslides occurrence was predicted to increase. These were due to an increase in heavy rainfall and cumulative rainfall. As a result of analysis, factors that has major impact on landslide appeared to be climate factors, prediction accuracy of the model was very high(92%). In the future Pyeongchang will have serious rainfall compare to 2006 and more intense landslides area expected to increase. This study will help to establish adaptation measure against landslides due to heavy rainfall.

Modeling the potential climate change-induced impacts on future genus Rhipicephalus (Acari: Ixodidae) tick distribution in semi-arid areas of Raya Azebo district, Northern Ethiopia

  • Hadgu, Meseret;Menghistu, Habtamu Taddele;Girma, Atkilt;Abrha, Haftu;Hagos, Haftom
    • Journal of Ecology and Environment
    • /
    • 제43권4호
    • /
    • pp.427-437
    • /
    • 2019
  • Background: Climate change is believed to be continuously affecting ticks by influencing their habitat suitability. However, we attempted to model the climate change-induced impacts on future genus Rhipicephalus distribution considering the major environmental factors that would influence the tick. Therefore, 50 tick occuance points were taken to model the potential distribution using maximum entropy (MaxEnt) software and 19 climatic variables, taking into account the ability for future climatic change under representative concentration pathways (RCPs) 4.5 and 8.5, were used. Results: MaxEnt model performance was tested and found with the AUC value of 0.99 which indicates excellent goodness-of-fit and predictive accuracy. Current models predict increased temperatures, both in the mid and end terms together with possible changes of other climatic factors like precipitation which may lead to higher tick-borne disease risks associated with expansion of the range of the targeted tick distribution. Distribution maps were constructed for the current, 2050, and 2070 for the two greenhouse gas scenarios and the most dramatic scenario; RCP 8.5 produced the highest increase probable distribution range. Conclusions: The future potential distribution of the genus Rhipicephalus show potential expansion to the new areas due to the future climatic suitability increase. These results indicate that the genus population of the targeted tick could emerge in areas in which they are currently lacking; increased incidence of tick-borne diseases poses further risk which can affect cattle production and productivity, thereby affecting the livelihood of smallholding farmers. Therefore, it is recommended to implement climate change adaptation practices to minimize the impacts.

Spatio-Temporal Projection of Invasion Using Machine Learning Algorithm-MaxEnt

  • Singye Lhamo;Ugyen Thinley;Ugyen Dorji
    • Journal of Forest and Environmental Science
    • /
    • 제39권2호
    • /
    • pp.105-117
    • /
    • 2023
  • Climate change and invasive alien plant species (IAPs) are having a significant impact on mountain ecosystems. The combination of climate change and socio-economic development is exacerbating the invasion of IAPs, which are a major threat to biodiversity loss and ecosystem functioning. Species distribution modelling has become an important tool in predicting the invasion or suitability probability under climate change based on occurrence data and environmental variables. MaxEnt modelling was applied to predict the current suitable distribution of most noxious weed A. adenophora (Spreng) R. King and H. Robinson and analysed the changes in distribution with the use of current (year 2000) environmental variables and future (year 2050) climatic scenarios consisting of 3 representative concentration pathways (RCP 2.6, RCP 4.5 and RCP 8.5) in Bhutan. Species occurrence data was collected from the region of interest along the road side using GPS handset. The model performance of both current and future climatic scenario was moderate in performance with mean temperature of wettest quarter being the most important variable that contributed in model fit. The study shows that current climatic condition favours the A. adenophora for its invasion and RCP 2.6 climatic scenario would promote aggression of invasion as compared to RCP 4.5 and RCP 8.5 climatic scenarios. This can lead to characterization of the species as preferring moderate change in climatic conditions to be invasive, while extreme conditions can inhibit its invasiveness. This study can serve as reference point for the conservation and management strategies in control of this species and further research.

큰산개구리(Rana uenoi ) 종분포모형을 활용한 시민과학 및 전문가 기반 조사자료의 비교연구 (Comparative Study of Citizen Science and Expert Based Survey Data Using the Species Distribution Model of Rana uenoi)

  • 이원철;유정우;노백호
    • 한국환경과학회지
    • /
    • 제32권6호
    • /
    • pp.429-440
    • /
    • 2023
  • Quantitative habitat model is established with species occurrence and spatial abundance data, which were usually acquired by professional field ecologists and citizen scientists. The importance of citizen science data is increasing, but the quality of these data needs to be evaluated. This study aims to identify and compare both expert-based data and citizen science data based on the performance power of quantitative models derived from both data sets. A Maximum Entropy (MaxENT) model was developed using eight environmental variables, including climate, topography, landcover and distance to forest edge. The AUC values derived from the MaxENT model were 0.842 and 0.809, respectively, indicating a high level of explanatory power. All environmental variables has similar values for both data sets, except for the distance to forest edge and rice paddy, which was relatively higher for expert-based survey data than that of the citizen science data as the distances increased. This result suggests that habitat model derived from expert-based survey data shows more ecological niche including wider ranges from forest edges and isolated habitat patches of rice paddy. This is presumably because citizen scientists focuses on direct observation methods, whereas professional field surveys investigate a wider variety of methods.

MaxEnt 모형을 활용한 부산광역시 내 오동나무 및 참오동나무의 분포 경향과 생태적 특성 (Distribution Patterns and Ecological Characters of Paulownia coreana and P. tomentosa in Busan Metropolitan City Using MaxEnt Model)

  • 이창우;이철호;최병기
    • 한국전통조경학회지
    • /
    • 제35권2호
    • /
    • pp.87-97
    • /
    • 2017
  • 오동나무는 한국 전통 문화에서 오래전부터 인식되어 왔으며, 다양한 분야에서 종의 가치에 대해 연구되어 왔다. 그러나 종의 분포와 생태적 특성에 대한 연구는 미흡한 상황이다. 본 연구는 MaxEnt 모형을 활용하여 부산광역시 내 오동나무 두 종의 분포 경향 및 생태적 특성을 밝히는데 목적을 두고 있다. MaxEnt 모형은 현장 조사로 수집된 오동나무 종의 위치 정보와 지형, 기후, 잠재인간간섭도와 같은 환경 인자로 구축되었다. 연구결과 AUC 값은 오동나무와 참오동나무가 각각 0.809으로 모형의 정확도가 적절한 것으로 확인되었다. 분포모형에 따른 연구지역 내 오동나무와 참오동나무의 분포 경향은 두 종 모두 시가지, 나지가 밀집해 있는 도심위주의 분포를 나타냈다. 두 종의 잠재분포가능면적은 오동나무 $137.4km^2$, 참오동나무 $135.0km^2$로 확인되었으며, 중구, 동래구, 부산진구, 연제구 등에서 높은 확률로 분포하였다. 환경요인의 기여도 분석 결과, 오동나무와 참오동나무의 분포에 잠재인간간섭도가 약 50% 내외의 기여를 하는 것으로 확인되었고, 잠재인간간섭도와 양의 상관관계를 나타냈다. 해발고도는 두 종 모두에서 음의 상관관계를 보였으며, 해발고도가 증가할수록 자연서식처에서 자생종과의 경쟁이 증가하기 때문인 것으로 판단된다. 본 연구의 결과들은 오동나무와 참오동나무의 분포가 인위적 활동에 의존되어 있음을 수리적으로 나타내는 결과이며, 한국 전통경관과의 관련성을 암시하는 결과이다. 이러한 결과는 추후 오동나무의 활용 및 보존, 복원에 있어서 의미 있는 정보를 제공할 수 있을 것으로 판단된다.

MaxEnt 모형을 이용한 소나무 잠재분포 예측 및 환경변수와 관계 분석 (Predicting the Potential Distribution of Pinus densiflora and Analyzing the Relationship with Environmental Variable Using MaxEnt Model)

  • 조낭현;김은숙;이보라;임종환;강신규
    • 한국농림기상학회지
    • /
    • 제22권2호
    • /
    • pp.47-56
    • /
    • 2020
  • 본 연구는 기후변화에 따른 소나무 잠재분포변화 예측 및 환경요인과의 관계를 파악하기 위한 목적으로 수행되었다. 입력자료인 종속변수는 1:5,000 임상도에서 추출한 소나무 출현자료를 사용하였으며, 독립변수는 RCP 시나리오 기후자료 및 임상도, 입지도에서 추출한 기후, 입지, 생육환경자료 등 총 14개의 환경요인 변수를 사용하였다. 이러한 입력자료를 바탕으로 생태적 지위 개념을 기반으로 한 종 분포 모형 중 하나인 MaxEnt (Maximum Entropy Modeling) 모형을 구동하여 미래의 소나무 잠재분포를 예측하였다. 분석결과 training AUC (Area Under Curve)가 0.79로 우수한 수준의 정확도를 보였으며 현존 소나무 분포 자료와 유사한 현재 잠재분포 결과를 보였다. RCP 시나리오를 적용한 결과 소나무 잠재분포지는 시간이 지남에 따라 지속적으로 감소할 것으로 나타났으며 RCP8.5 기준으로 2050년과 2070년에 각각 11.1%, 18.7%의 잠재분포지가 줄어들 것으로 예측되었다. 입력자료의 소나무 잠재분포 판단에 대한 기여도는 계절기온, 고도, 겨울철 기온 등이 높게 나타났다. 본 연구의 결과는 기후변화로 인한 소나무림 보전 및 대책 수립을 위한 기초자료로 활용될 것으로 판단된다.

기후변화에 따른 우리나라 미선나무의 분포변화 예측 (Projection of climate change effects on the potential distribution of Abeliophyllum distichum in Korea)

  • 이상혁;최재용;이유미
    • 농업과학연구
    • /
    • 제38권2호
    • /
    • pp.219-225
    • /
    • 2011
  • Changes in biota, species distribution range shift and catastrophic climate influence due to recent global warming have been observed during the last century. Since global warming affects various sectors, such as agriculture and vegetation, it is important to predict more accurate impact of future climate change. The purpose of this study is to examine the observed distribution of Abeliophyllum distichum in the Korean peninsula. For this purpose, two period (present and future) climate data were used. Mean data between 1950 and 2000, were used as the present value and the year 2050 and 2080 data from A1B senario in IPCC SRES were used for the future value. Potential habitation is analyzed by MaxEnt(Maximum Entropy model), and Abeliophyllum distichum's coordinates data were used as a dependent variable and independent variables are composed of environmental data such as BioClim, altitude, aspect and slope. The result of six types GCM mean calculation, the potential habitability decreased by 40-60% of the average existing distribution. The methodogies and results of this research can be applicable to the climate changing adaptation stratiegies for the biodiversity conservation.

Assessing the Carrying Capacity of Wild Boars in the Bukhansan National Park using MaxEnt and HexSim Models

  • Tae Geun Kim
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제4권3호
    • /
    • pp.115-126
    • /
    • 2023
  • Understanding the carrying capacity of a habitat is crucial for effectively managing populations of wild boars (Sus scrofa), which are designated as harmful wild animal species in national parks. Carrying capacity refers to the maximum population size supported by a park's environmental conditions. This study aimed to estimate the appropriate wild boar population size by integrating population characteristics and habitat suitability for wild boars in the Bukhansan National Park using the HexSim program. Population characteristics included age, survival, reproduction, and movement. Habitat suitability, which reflects prospecting and resource acquisition, was determined using the Maximum Entropy model. This study found that the optimal population size for wild boar ranged from 217 to 254 individuals. The population size varied depending on the amount of resources available within the home range, indicating fewer individuals in a larger home range. The estimated wild boar population size was 217 individuals for the minimum amount of resources (50% minimum convex polygon [MCP] home range), 225 individuals for the average amount of resources (95% MCP home range), and 254 individuals for the maximum amount of resources (100% MCP home range). The results of one-way analysis of variance revealed a significant difference in wild boar population size based on the amount of resources within the home range. These findings provide a basis for the development and implementation of effective management strategies for wild boar populations.

MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측 (Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model)

  • 이민기;천정화;이창배
    • 한국농림기상학회지
    • /
    • 제23권1호
    • /
    • pp.55-67
    • /
    • 2021
  • 서어나무속 수종은 우리나라 온대중부지방 극상림을 이루는 주요 수종으로 인식되어 왔으며, 국내에서 넓은 분포역을 보인다. 기존 많은 연구들은 서어나무(C. laxiflora) 군락의 군집구조, 식생천이, 분포 현황 등에 대한 연구가 대부분을 이루었다. 그러나, 개서어나무(C. tschonoskii)의 경우, 개체종 수준에서의 집중연구보다는 임분 내 구성목으로서 다른 수목종들과의 군집구조 분석에 초점을 맞춰 아직까지 연구가 미흡실정이다. 또한, 두 수종에 대한 서식환경, 서식지 선호도, 기후 및 환경변화 등의 교란에 따른 서식지 변화에 대한 연구는 전무한 실정이다. 본 연구에서는 최대 엔트로피 모델링(MaxEnt; Maximum Entropy Modeling)기법을 사용해 서어나무와 개서어나무의 서식지 분포에 영향을 끼치는 환경인자를 분석하고 두 가지 기후 예측 시나리오인 RCP4.5 및 RCP8.5를 적용하여 각각 2050년대와 2090년대의 분포변화를 예측하였다. 연구결과 각 수종의 서식지 분포에 영향을 끼치는 주요인자로 서어나무는 고도, 온도 계절성, 연평균 강수량인 것으로 나타났고, 개서어나무는 온도 계절성, 연평균 강수량, 주간 일교차인 것으로 나타났다. 서식지 면적의 경우 서어나무는 RCP4.5, RCP8.5의 기후변화가 진행됐을 때, 현재 서식지 면적에 비해 각각 약 1.05배, 약 1.11배로 면적이 증가할 것으로 예측되었다. 개서어나무는 RCP4.5, RCP8.5의 기후변화가 진행됐을 때, 현재 서식지 면적에 비해 각각 약 1.24배, 약 1.33배의 증가가 보일 것으로 예측되었다. 본 연구는 분류학적으로 유사계통에 속하는 서어나무와 개서어나무의 기후변화에 따른 국내 분포확산과 분포지역 간 차이에 대한 미래예측 그리고 두 종의 서식지 및 개체군 관리에 있어서 잠재적 관리 대상지 및 고려사항에 대한 유의미한 정보를 제공할 것으로 판단된다.