DOI QR코드

DOI QR Code

Comparative Study of Citizen Science and Expert Based Survey Data Using the Species Distribution Model of Rana uenoi

큰산개구리(Rana uenoi ) 종분포모형을 활용한 시민과학 및 전문가 기반 조사자료의 비교연구

  • Woncheol Lee (Department of Environmental Science, Keimyung University) ;
  • Jeongwoo Yoo (Research Center for Endangered Species, National Institute of Ecology) ;
  • Paikho Rho (Department of Global Environment, Keimyung University)
  • 이원철 (계명대학교 환경과학과) ;
  • 유정우 (국립생태원 멸종위기종복원센터) ;
  • 노백호 (계명대학교 지구환경학과)
  • Received : 2023.03.27
  • Accepted : 2023.05.03
  • Published : 2023.06.30

Abstract

Quantitative habitat model is established with species occurrence and spatial abundance data, which were usually acquired by professional field ecologists and citizen scientists. The importance of citizen science data is increasing, but the quality of these data needs to be evaluated. This study aims to identify and compare both expert-based data and citizen science data based on the performance power of quantitative models derived from both data sets. A Maximum Entropy (MaxENT) model was developed using eight environmental variables, including climate, topography, landcover and distance to forest edge. The AUC values derived from the MaxENT model were 0.842 and 0.809, respectively, indicating a high level of explanatory power. All environmental variables has similar values for both data sets, except for the distance to forest edge and rice paddy, which was relatively higher for expert-based survey data than that of the citizen science data as the distances increased. This result suggests that habitat model derived from expert-based survey data shows more ecological niche including wider ranges from forest edges and isolated habitat patches of rice paddy. This is presumably because citizen scientists focuses on direct observation methods, whereas professional field surveys investigate a wider variety of methods.

Keywords

References

  1. Bradie, J., Leung, B., 2017, A Quantitative synthesis of the importance of variables used in MaxENT species distribution models, J. Biogeogr., 44, 1344-1361. https://doi.org/10.1111/jbi.12894
  2. Choi, J. Y., Lee, S. H., 2018, Climate change impact assessment of Abies nephrolepis(Trautv.) Maxim. in subalphine ecosystem using ensemble habitat suitability modeling, J. Kor. Env. Res. Tech., 21(1), 103-118.
  3. Chu, H. C., Lee, J. B., 2020, Climate change trend analysis on the Korea through the monitoring of the climate change indicator species butterfly -Citizen participatory monitoring with the theme of the climate change indicator species butterfly species-, Cooperative Project of Dong-A Science, Korea Safety Health Environment Foundation, and Citizen Science of Seed, Seoul,
  4. Gibbons, J. W., Scott, D. E., Ryan, T. J., Buhlmann, K. A., Tuberville, T. D., Metts, B. S., Greene, J. L., Mills, T., Leiden Y., Poppy, S., Winne, C. T., 2000, The global decline of reptiles, deja vu amphibians, Bioscience, 50, 653-666. https://doi.org/10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2
  5. Jang, H. J., Kim, D. I., Suh, J. H., 2013, Altitudinal distribution of breeding sites of Korean brown frogs, 6th Proceedings of The Korean Research Society of Herpetologists, 37., Jeju,
  6. Kim, H. H., Mizuno, K., Lee, H. S., Koo, J. G., Kong, W. S., 2021, Distribution of indicator plant of climate change in major islands of the Korean peninsula, J. Environ. Sci., 30(1), 29-43. https://doi.org/10.5322/JESI.2021.30.1.29
  7. Kim, J. S., Pi, J. H., Lee, S. D., Lee, C. H., 2015, Characteristics of amphibians distribution as habitat type, Proc. Kor. Soc. Environ Ecol. Con., 25(1), 56.
  8. Knutson, M. G., Sauer, J. R., Olsen, D. A., Mossman, M. J., Hemesath, L. M., Lannoo, M. J., 1999, Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, U.S.A., Conserv. Biol., 13(6), 1437-1446. https://doi.org/10.1046/j.1523-1739.1999.98445.x
  9. Lee, J. H., Jang, H. J., Seo, J. H., 2011, Ecological guide book of herpetofauna in Korea, National Institute of Environmental Research, Incheon,
  10. Lee, Y. H., Hong, S. H., Na, C. S., Sohn, S. I., Kim, M. H., Kim, C. S., Oh, Y. J., 2016, Predicting the Suitable Habitat of Amaranthus viridis Based on Climate Change Scenarios by MaxEnt, Kor. J. Environ. Biol., 34(4), 240-245. https://doi.org/10.11626/KJEB.2016.34.4.240
  11. Li, Y., Cohen, J. M., Rohr, J. R., 2013, Review and synthesis of the effects of climate change on amphibians, Integr. Zool., 8, 145-161. https://doi.org/10.1111/1749-4877.12001
  12. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., Zhou, B., 2021, IPCC Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC), Cambridge University Press, Cambridge, United Kingdom.
  13. Melo-Merino, S. M., Reyes-Bonilla, H., Lira-Noriega, A., 2020, Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence, Ecol. Modell., 415, 108837.
  14. Miller, J. R., Turner, M. G., Smithwick, E. A. H., Dent, C, L., Stanley, E. H., 2004, Spatial extrapolation: The science of predicting ecological patterns and processes, Bioscience, 54(4), 310-320. https://doi.org/10.1641/0006-3568(2004)054[0310:SETSOP]2.0.CO;2
  15. Morrison, M. L., Marcot, B. G., Mannan, R. W., 2006, Wildlife-habitat relationships: concepts and applications, Island Press, Washington, D.C., U.S.A.
  16. Moilanen, A., Nieminen, M., 2002, Simple connectivity measures in spatial ecology, Ecology, 83(4), 1131-1145. https://doi.org/10.1890/0012-9658(2002)083[1131:SCMISE]2.0.CO;2
  17. National Institute of Biological Resources, 2010, Climate-sensitive Biological Indicator Species, https://species.nibr.go.kr/species/speciesEco.do.
  18. National Institute of Biological Resources, 2022, Detailed Information on Rana dybowskii, https://species.nibr.go.kr/home/mainHome.do?cont_link=009&subMenu=009002&contCd=009002&ktsn=120000001390.
  19. National Institute of Ecology, 2019, The 5th National Natural Environment Guidelines, NIE-forensic research-2019-01, Seocheon,
  20. Phillips, S. J., Anderson, R. P., Schapire, R. E., 2006, Maximum entropy modeling of species geographic distributions, Ecol. Modell., 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  21. Phillips, S. J., Dudik, M., 2008, Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation, Ecography, 31, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  22. Ray, N., Lehmann, A., Joly, P., 2002, Modeling spatial distribution of amphibian populations: A GIS approach based on habitat matrix permeability, Biodivers. Conserv., 11(2), 2143-2165. https://doi.org/10.1023/A:1021390527698
  23. Seo, C. W., Choi, T. Y., Choi, Y. S., Kim, D. Y., 2008, A Study on the habitat suitability model for wild animals targeting Seorak mountain goats, J. Ecol. Environ., 11, 28-38.
  24. Song, J. Y., Ho, L., Kim, M. R., Park, H. C., Park, E, H., 2018, Monitoring of Rana dybowslii through citizen science, 11th Proceedings of The Korean Society of Herpetologist, 10, Seocheon,
  25. Song, U., Yang, E., Kim, M.W., Kim, B., Kwak, S., Oh, S., Hong, M., Heo, J., Lee, S., Jeong, S., Kim, H., Oh, H., Park, H., Rim, H., 2022, Predicting the effects of climate change on tadpole stage fitness in the Korean brown frog Rana uenoi Matsui, 2014(Amphibia: Ranidae). Asian. J. Conserv. Biol., 11(1), 41-48.
  26. Theobald, E. J., Ettinger, A. K., Burgess, H. K., DeBey, L. B., Schmidt, N. R., Froehlich, H. E., 2015, Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research, Biol. Conserv., 181, 236-244. https://doi.org/10.1016/j.biocon.2014.10.021
  27. Yang, S. Y., Kim, J. B., Min, M. S., Seo, J. H., Kang, Y. J., 2001, Monograph of Korean amphibia, Academy Press, Seoul, Korea.