• Title/Summary/Keyword: Maturity Day Yield

Search Result 40, Processing Time 0.027 seconds

A Study on the Investment Effect of Convertible Bond (전환사채의 투자효과에 관한 연구)

  • Kim, Sun-Je
    • Journal of Industrial Convergence
    • /
    • v.18 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • The purpose of this study is to find out how much the investment effect of convertible bond(CB) is from the perspective of investors and to present efficient investment plans to investors. The research method is to investigate the coupon interest rate, maturity interest rate, conversion price, etc. for CBs. As a result of the study, it was analyzed that CB's investment efficiency was low because the conversion price excess days ratio was only about 1/4 of the conversion date. The conversion day yield was -6.3% and the maturity day yield was -5.2% on average. It was analyzed that the number of stocks with negative conversion day yield was 2.4 times higher than the number of positive stocks and 3.7 times higher than the number of positive stocks with a maturity day yield, so the expected return on equity conversion of CB was low.

Effect of Planting Date on Forage Yield and Quality of corn Four Maturity Groups (숙기가 다른 사일리지용 옥수수의 파종기가 사초의 수량과 사료가치에 미치는 영향)

  • 김동암;이광녕;신동은;김종덕;한건준
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.4
    • /
    • pp.327-337
    • /
    • 1996
  • A field experiment was conducted at SNU Experimental Livestock Farm, Suweon in 1995 to determine effect of planting date on forage performance of wm hybrids of four different maturity groups. A split-plot design replicated three times was used, with com hybrids representing four maturity groups (115, 118, 121 and 125 days) being the main plots and planting dates (3124, 415, 415, 425, 515 and 5/15) the sub-plots. 1. Days to emergence and percent emergence from the March 24 planting were, on the average, 36 days and 58%, respectively, but those from the April 5 to May 15 planting averaged 12 days and 92%, respectively. 2. Plant and ear heights increased gradually as the dates of planting were delayed except the May 15 planting, however, percent ear was decreased as the dates of planting were delayed. There was a trend for the mean lodging percentage of the hybrids to be higher as the planting date was delayed. 3. The 115-and 118-day mediumearly maturing hybrids harvested on August 18 produced silages with a dry matter content between 27 and 30% at all planting dates except the May 15 planting, while the 121-and 125-day medium-late maturing hybrids produced silages with a dry matter wntent less than 27% regardless of any planting dates. 4. There were no significant differences in mean dry matter yield among the hybrids, but significant mean TDN yield differences were found. The 115-, 118- and 125-day hybrids had significantly higher mean TDN yield than the 121-day hybrid. There were significant differences in mean dry matter and TDN yields among the planting dates. The mean dry matter and TDN yields from the April 5, 15 and 25 plantings were significantly higher than those of other plantings, however, there were no significant differences in mean TDN yield among the April 5, April 15 and April 25 plantings. No significant planting date $\times$ maturity interactions were found for both the dry matter and TDN yields. 5. Mean stover NDF and ADF contents of the 115- and 118day hybrids were higher than those of the 121- and 125-day hybrids, but the reverse was true for mean stover IVDMD and RFV. Mean stover NDF an ADF contents increased with earlier plantings, but mean stover IVDMD and RFV increased when planting was delayed. Results of this experiment indicate that for corn planting in central and northern areas of Korea, early to mid-April may be the right time with the 115-to 118-day maturity hybrids when silage making before August 20 is taken into consideration.

  • PDF

A Study on the Investment Efficiency of CB(Convertible Bond) (CB(전환사채)의 투자효율성에 관한 실증연구)

  • Sun-Je Kim
    • Journal of Service Research and Studies
    • /
    • v.10 no.4
    • /
    • pp.71-88
    • /
    • 2020
  • CB(Convertible bond) is mezzanine security that have the characteristics of bonds and stocks. From the perspective of investors, the purpose of the research is to empirically investigate the degree of investment efficiency of CB and to suggest efficient investment plans. The research method investigated the maturity interest rate, conversion price, and conversion date for CB, and then linked it with daily stock price fluctuations after the conversion date to determine the degree of investment efficiency and stock conversion effect of CB. As a result of the study, it was analyzed that the ratio of the conversion price exceeded days was only about 1/4 of the conversion date, so the investment efficiency was low. The conversion day yield was -6.3% on average and the maturity day yield was -5.2% on average, showing a minus return on average, which was calculated differently from investor expectations. It was analyzed that the number of stocks with a minus conversion day is 2.4 times greater than the number of plus stocks and 3.7 times more than the number of plus stocks with a minus maturity return, so the expected return on stock conversion of CB is low. The research contribution was derived from the problem that the expected rate of return of CB is not high, and it is that the investor's point of view when purchasing CB was established.

Effect of Growth and Yield of Soybean on Late-Sowing Compared to Optimal Sowing in the Southern Region of South Korea (남부지역에서 콩의 적기파종 대비 후기 파종이 생육과 수량에 미치는 영향)

  • Ye Rin Kim;Jong hyuk Kim;Il Rae Rho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.61-69
    • /
    • 2024
  • Considering the threats of climate change, this study was conducted to investigate the influence of temperature and day-length on soybean growth and yield when sown late in comparison to the optimal sowing time in the southern region of the Korean Peninsula. Sowing was executed in 10-day intervals, including on July 1, 10, 20 and 30 and August 10, considering that the optimum sowing time of the three soybean varieties with different ecotypes is June 20. Emergence rates did not differ significantly between late-sowing and optimal sowing in all ecotypes; however, the number of days to emergence, flowering, and maturity was smaller after late sowing. A multiple-regression approach was used to test the effect of temperature and day length on the number of growing days after late sowing compared to the optimal sowing time. This analysis revealed that the number of days required from sowing to flowering was positively correlated with both day length and temperature, and the number of days from flowering to harvest was positively correlated with day length and negatively with temperature. A multiple regression equation can be calculated as follows: the number of days required from sowing to flowering (Y) = 3.177 + (0.030 × (sum of day length + sum of temperature)), and the number of days required from flowering to maturity (Y) = 20.945 + (0.021 × (sum of day length + sum of temperature)). Multiple growth parameters were significantly correlated with yield components, depending on growing days. Optimal sowing resulted in the best yield, while later sowing decreased yield compared to optimal sowing. To avoid a significant decrease in yield, early-maturing species should be sown by July 20, while late-maturing species should be sown by July 10.

Predicting Harvest Maturity of the 'Fuji' Apple using a Beta Distribution Phenology Model based on Temperature (온도기반의 Beta Distribution Model 을 이용한 후지 사과의 성숙기 예측)

  • Choi, In-Tae;Shim, Kyo-Moon;Kim, Yong-Seok;Jung, Myung-Pyo
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1247-1253
    • /
    • 2017
  • The Fuji variety of apple, introduced in Japan, has excellent storage quality and good taste, such that it is the most commonly cultivated apple variety in Gunwi County, North Gyeongsang Province, Korean Peninsula. Accurate prediction of harvest maturity allows farmers to more efficiently manage their farm in important aspects such as working time, fruit storage, market shipment, and labor distribution. Temperature is one of the most important factors that determine plant growth, development, and yield. This paper reports on the beta distribution (function) model that can be used to simulate the the phenological response of plants to temperature. The beta function, commonly used as a skewed probability density in statistics, was introduced to estimate apple harvest maturity as a function of temperature in this study. The model parameters were daily maximum temperature, daily optimum temperature, and maximum growth rate. They were estimated from the input data of daily maximum and minimum temperature and apple harvest maturity. The difference in observed and predicted maturity day from 2009 to 2012, with optimal parameters, was from two days earlier to one day later.

Evaluation of Forage Productivity and Nutritional Value of Kenaf (Hibiscus cannabinus L.) at Different Fertilizer Application Amounts and Different Stages of Maturity

  • Tomple, Byamungu Mayange;Jo, Ik-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.84-95
    • /
    • 2021
  • The purpose of this study was to assess the forage productivity and nutritive value of kenaf at different fertilizer application amounts and various stages of maturity. The experiment was conducted from May to September 2020, the amount of 80 kg of kenaf seed/ha was supplied with different types and amounts of nitrogen fertilizer and the plants were harvested at 10-day intervals from different harvesting dates (24th August and 3rd, 13th, 23rd September). According to the different fertilizer types and application amounts, the highest kenaf height was recorded in the inorganic fertilizer amounts of 200 and 250 kg N/ha and the fresh and DM yield were significantly improved in the inorganic nitrogen amount of 250 kg N/ha. The highest CP and TDN content in the leaf was achieved in the inorganic fertilizer amounts of 150 and 200 kg N/ha, respectively; and the highest TDN content in the stem was also found in the inorganic fertilizer amount of 200 kg N/ha. According to the different harvesting dates, the highest DM ratio was found in the harvesting date of 13th September, the leaf ratio increased with advanced maturity, whereas the stem ratio decreased significantly and the highest DM yield of kenaf was recorded in the harvesting dates of 13th and 23rd September. Besides, the highest CP, CF, CA, ADF, NDF and TDN content in the leaf as influenced by different harvesting dates was 15.4, 31.8, 10.2, 22.1, 34.7 and 76.5%, respectively, and the CP, CA, ADF and TDN in stem decreased significantly with advanced maturity of kenaf. In conclusion, the optimal fertilizer amounts and the appropriate harvesting dates for a high forage yield and high-quality kenaf as livestock feed were the inorganic fertilizer application amounts of 200-250 kg N/ha and from 13th and 23rd September, respectively.

Studies on the Response to Day-length and Temperature and their Effects on the Yield of Perilla (Perilla ocimoides L.) (들깨의 일장 및 온도에 대한 감응성과 그의 수량에 미치는 영향에 관한 연구)

  • Ik-Sang Yu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.79-114
    • /
    • 1974
  • Experiments were conducted to clarify the variations of the ecological characteristics under different day-length and temperature conditions inperilla varieties from 1972 to 1973 in the experimental fields of Crop Experiment Station, O.R.D, Suwon. Thirty-six varieties were tested in the field in 1972 under 6 growing seasons differing seeding dates. from April 5th to June 20th with 15-day interval between each seeding. Pot-experiment also were conducted in 1972 and 1973. The seeds of the 6 varieties tested were sown on May 25th. In this pot-experiment natural condition was regarded as a short-day treatment and 100-W incandescent lamps were used for long-day treatment. Three selected varieties were grown under different. temperature treatments in phytotron in Crop Experiment Station. The results obtained are summarized as follows: 1. Most varieties tested flowered around September 6. The days required to flower were shortened gradually as the planting time was delayed. 2. The varieties used were matured around October 6, but the maturity was shortened when planted early. The days required for maturity after flowering was 26 to 30. 3. The growing period was also shortened gradually when planting time was delayed. 4. Plant height was reduced when planting time was delayed. 5. There were little differences in number of valid branches among planting time I, II and III, while the branch number was reduced as the planting time was delayed. 6. The dry matter weight was gradually increased from planting time I to III, while it was rapidly decreased after planting time IV. 7. It was found that the flowering of perilla was little affected by temperature. The varieties, however, were more sensitive to day-length. 8. No clear tendency was found in the plant height, number of valid branches and dry matter weight by the time and period of day-length and temperature treatments. 9. The highest yield was obtained at planting time III(May 5th) and the yield was decreased at either earlier or later planting. 10. 1, 000 grain weight appeared to be heavier as the planting time was delayed. 11. The number of flower cluster was largest at planting time III (May 5th) and it was decreased as planting time was earlier or later than III. 12. The oil content was also highest at planting time III (May 5th). 13. Days to flowering, days to maturity and total growing period and flowering period did not affect the yield much. 14. The number of valid branches, flower clusters, 1, 000-grain weight and dry matter weight were positively correlated with yield. The relationship between these characters and yield were variable depending upon the planting time.

  • PDF

Impact of Climate Change Induced by the Increasing Atmospheric $CO_2$Concentration on Agroclimatic Resources, Net Primary Productivity and Rice Yield Potential in Korea (대기중 $CO_2$농도 증가에 따른 기후변화가 농업기후자원, 식생의 순 1차 생산력 및 벼 수량에 미치는 영향)

  • 이변우;신진철;봉종헌
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.112-126
    • /
    • 1991
  • The atmospheric carbon dioxide concentration is ever-increasing and expected to reach about 600 ppmv some time during next century. Such an increase of $CO_2$ may cause a warming of the earth's surface of 1.5 to 4.5$^{\circ}C$, resulting in great changes in natural and agricultural ecosystems. The climatic scenario under doubled $CO_2$ projected by general circulation model of Goddard Institute for Space Studies(GISS) was adopted to evaluate the potential impact of climate change on agroclimatic resources, net primary productivity and rice productivity in Korea. The annual mean temperature was expected to rise by 3.5 to 4.$0^{\circ}C$ and the annual precipitation to vary by -5 to 20% as compared to current normal climate (1951 to 1980), resulting in the increase of possible duration of crop growth(days above 15$^{\circ}C$ in daily mean temperature) by 30 to 50 days and of effective accumulated temperature(EAT=∑Ti, Ti$\geq$1$0^{\circ}C$) by 1200 to 150$0^{\circ}C$. day which roughly corresponds to the shift of its isopleth northward by 300 to 400 km and by 600 to 700 m in altitude. The hydrological condition evaluated by radiative dryness index (RDI =Rn/ $\ell$P) is presumed to change slightly. The net primary productivity under the 2$\times$$CO_2$ climate was estimated to decrease by 3 to 4% when calculated without considering the photosynthesis stimulation due to $CO_2$ enrichment. Empirical crop-weather model was constructed for national rice yield prediction. The rice yields predicted by this model under 2 $\times$ $CO_2$ climatic scenario at the technological level of 1987 were lower by 34-43% than those under current normal climate. The parameters of MACROS, a dynamic simulation model from IRRI, were modified to simulate the growth and development of Korean rice cultivars under current and doubled $CO_2$ climatic condition. When simulated starting seedling emergence of May 10, the rice yield of Hwaseongbyeo(medium maturity) under 2 $\times$ $CO_2$ climate in Suwon showed 37% reduction compared to that under current normal climate. The yield reduction was ascribable mainly to the shortening of vegetative and ripening period due to accelerated development by higher temperature. Any simulated yields when shifted emergence date from April 10 to July 10 with Hwaseongbyeo (medium maturity) and Palgeum (late maturity) under 2 $\times$ $CO_2$ climate did not exceed the yield of Hwaseongbyeo simulated at seedling emergence on May 10 under current climate. The imaginary variety, having the same characteristics as those of Hwaseongbyeo except growth duration of 100 days from seedling emergence to heading, showed 4% increase in yield when simulated at seedling emergence on May 25 producing the highest yield. The simulation revealed that grain yields of rice increase to a greater extent under 2$\times$ $CO_2$-doubled condition than under current atmospheric $CO_2$ concentration as the plant type becomes more erect.

  • PDF

A Study on the Changes in Grain Weight, Moisture Content, Shattering Force, Milling Ratio and Apparant Physical Quality of Rice with Harvesting Time (수도의 수확적기결정을 위한 기초적 연구)

  • Yong-Woong Kwon;Jin-Chul Shin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.1-9
    • /
    • 1980
  • To determine the optimum harvest time of recent rice varieties from Indica/Japonica remote crosses, leading varieties Suweon 264 and Milyang 23 were tested for the changes in dry matter weight and moisture content of grain, shattering, shelling ratio, milling ratio, and apparant physical quality during grain development at 5 day-intervals from 20 days to 55 days after heading. The results are summarized as follows: 1. Grain weight (dry matter) reached its maximum (physiological maturity) at 30 days after flowering (DAF) in Suweon 264, and at 35 days in Milyang 23, and thereafter it did not change significantly until 55 DAF. 2. Time course of decrease in grain moisture content (Y, %) during maturation (X, DAF) consisted of two linear phases, i.e. a fast and a slow period: Y=68.245-1.33X until 34DAF, and Y=23.025-0.470X until 55DAF after 34DAF in Suweon 264; Y=73.62-1.634X until 24.5DAF, and Y=33.59-0.570X until 55DAF after 24.5DAF in Milyang 23. Two varieties showed the same grain moisture content of 28% (wet basis) at physiological maturity in spite of the distinct differences in the heading date, time of physiological maturity and thereby ripening climate. 3. Force to shatter a grain ranged about 90 to 100g in Milyang 23, and about 200 to 250g in Suweon 264 and in a Japonica variety, Jinheung. The force, however, did not change significantly with harvest time from 35DAF to 50DAF. 4. The changes in the ratios of shelling, milling, broken rice and tinted rice with harvest time were insignificant during a period from 35DAF to 55DAF. However, ratios of green rice and white belly rice decreased significantly with delay in harvest time during 10 days after physiological maturity. 5. The best time of harvest for maximum yield and good quality is thought to be 10 days after physiological maturity, and grain moisture content at this time was about 20% on wet basis.

  • PDF

Effects of Maturing Stage of Corn Hybrids on Silage Yield, Feeding Value for Dairy Cows and Milk Production in a Cold Region of Japan

  • Oshita, Tomoko;Takayama, Hideki;Otsuka, Hiroshi;Igarashi, Hiroaki;Nonaka, Kazuhisa;Kume, Shinichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.511-516
    • /
    • 2007
  • This experiment was conducted to evaluate the effects of differently maturing corn hybrids on silage production and milk production per unit area in the northern part of Japan, where grain development occurs under decreasing ambient temperature. Both hybrids were harvested at the same time. The stages of maturity for the early-maturing hybrids (EH; 80 d relative maturity) and the mid-maturing hybrids (MH; 93 d relative day) were early dent and late dough stage, respectively. The plant yields for MH were higher than those for EH. The dry matter (DM) content of MH was lower than that for EH, and the effluent loss for MH silage was greater than that for EH silage. Therefore, the DM yields of prepared silage per area were similar for both treatments. Twelve multiparous mid-lactation Holstein cows ($58{\pm}13$ days in milk) were fed diets based on EH or MH silage in a crossover design with two 3-week periods. Cows were fed 3 kg of hay crop silage (DM basis) and either EH or MH silage ad libitum, and concentrates were supplied to meet NRC requirement for dairy cows. Silage DM intake for EH was found to be higher (p<0.05) than that for MH (10.0 vs. 9.1 kg/day). Milk production and milk composition for EH were similar to those for MH. Feed efficiency per total feed intake was similar in both treatments, although the feed efficiency per concentrate intake tended to be higher for the EH than that for the MH diet. These results indicate that differences in maturation in corn hybrids affect the effluent production of silage and the silage intake of dairy cows. It may be advantageous to plant early hybrid corn with a reduction in effluent production of silage as well as a reduction in purchased feed costs for dairy cows under the climatic conditions of the northern part of Japan.