• 제목/요약/키워드: Matrix-free

검색결과 742건 처리시간 0.025초

Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method

  • Uzun, Busra;Civalek, Omer
    • Advances in nano research
    • /
    • 제7권2호
    • /
    • pp.99-108
    • /
    • 2019
  • Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

PRIMARY DECOMPOSITION OF SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A BÉZOUT DOMAIN

  • Fatemeh Mirzaei;Reza Nekooei
    • 대한수학회보
    • /
    • 제60권2호
    • /
    • pp.475-484
    • /
    • 2023
  • Let R be a commutative ring with identity. In this paper, we characterize the prime submodules of a free R-module F of finite rank with at most n generators, when R is a GCD domain. Also, we show that if R is a Bézout domain, then every prime submodule with n generators is the row space of a prime matrix. Finally, we study the existence of primary decomposition of a submodule of F over a Bézout domain and characterize the minimal primary decomposition of this submodule.

Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes

  • M., Alimoradzadeh;S.D., Akbas
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.335-344
    • /
    • 2023
  • This investigation presents nonlinear free vibration of a carbon nanotube reinforced composite beam based on the Von Kármán nonlinearity and the Euler-Bernoulli beam theory The material properties of the structure is considered as made of a polymeric matrix by reinforced carbon nanotubes according to different material distributions. The governing equations of the nonlinear vibration problem is delivered by using Hamilton's principle and the Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained with the effect of different patterns of reinforcement.

Effects of Extracellular Matrix Protein-derived Signaling on the Maintenance of the Undifferentiated State of Spermatogonial Stem Cells from Porcine Neonatal Testis

  • Park, Min Hee;Park, Ji Eun;Kim, Min Seong;Lee, Kwon Young;Hwang, Jae Yeon;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1398-1406
    • /
    • 2016
  • In general, the seminiferous tubule basement membrane (STBM), comprising laminin, collagen IV, perlecan, and entactin, plays an important role in self-renewal and spermatogenesis of spermatogonial stem cells (SSCs) in the testis. However, among the diverse extracellular matrix (ECM) proteins constituting the STBM, the mechanism by which each regulates SSC fate has yet to be revealed. Accordingly, we investigated the effects of various ECM proteins on the maintenance of the undifferentiated state of SSCs in pigs. First, an extracellular signaling-free culture system was optimized, and alkaline phosphatase (AP) activity and transcriptional regulation of SSC-specific genes were analyzed in porcine SSCs (pSSCs) cultured for 1, 3, and 5 days on non-, laminin- and collagen IV-coated Petri dishes in the optimized culture system. The microenvironment consisting of glial cell-derived neurotrophic factor (GDNF)-supplemented mouse embryonic stem cell culture medium (mESCCM) (GDNF-mESCCM) demonstrated the highest efficiency in the maintenance of AP activity. Moreover, under the established extracellular signaling-free microenvironment, effective maintenance of AP activity and SSC-specific gene expression was detected in pSSCs experiencing laminin-derived signaling. From these results, we believe that laminin can serve as an extracellular niche factor required for the in vitro maintenance of undifferentiated pSSCs in the establishment of the pSSC culture system.

Mn 첨가가 경면처리용 Fe계 신합금의 캐비테이션 에로젼과 슬라이딩 마모저항성에 미치는 영향 (Effect of Mn-Addition on the Sliding Wear Resistance and the Cavitation Erosion Resistance of Fe-base Hardfacing Alloy)

  • 김윤갑;오영민;김선진
    • 한국재료학회지
    • /
    • 제12권7호
    • /
    • pp.550-554
    • /
    • 2002
  • The effect of Mn on cavitation erosion resistance and the sliding wear resistance of Fe-base hardfacing NewAlloy was investigated. Mn is known to decrease stacking fault energy and enhance the formation of $\varepsilon$-martensite. Cavitation erosion resistance for 50 hours and sliding wear resistance for 100 cycles were evaluated by weight loss. Fe-base hardfacing NewAlloy showed more excellent cavitation erosion resistance than Mn-added NewAlloys. $\Upsilon-\alpha$' phase transformation that can enhance erosion resistance by matrix hardening occurred in every specimens. But, only in Mn free Fe-base hardfacing NewAlloy, the hardened matrix could repress the propagation of cracks that was initialed at the matrix-carbides interfaces more effectively than Mn-added NewAlloy The Mn free Fe-base hardfacing NewAlloy showed better sliding wear resistance than Mn-added alloys. Mn-addition up to 5wt.% couldn't increase the sliding wear and cavitation erosion resistance of Fe-base hardfacing alloy because it didn't make $\Upsilon\to\varepsilon$ martensite phase transformation. Therefore, it is considered that the cavitation erosion and the sliding wear resistance can be improved due to $\Upsilon\to\varepsilon$ martensite phase transformation when Mn is added more than 5wt.% in Fe-base hardfacing alloys.

BaTiO3 압전나노입자와 폴리머로 제작된 비납계 압전복합체의 스트레쳐블 압전 센서 어레이로의 적용 연구 (Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix)

  • 배준호;함성수;박성철;박귀일
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.312-317
    • /
    • 2022
  • Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.

2차원 자유표면파 문제에서의 국소 유한요소법의 응용 (An Application of the Localized Finite Element Method to Two-dimensional Free Surface Wave Problems)

  • 길현권;배광준
    • 대한조선학회지
    • /
    • 제22권3호
    • /
    • pp.9-18
    • /
    • 1985
  • The numerical calculation for solving boundary-value problem related to potential flows with a free surface is carried out by application of the localized finite element method. Only forced motion of 2-D body in infinitely deep fluid is considered, although this schemes is equally applicable to any first order time-harmonic problems of similar nature. The infinite domain of the fluid is separated into the inner flow field and the outer flow field with common inter-surface boundary. The finite element method is applied to obtain the solution in the inner flow field and the Green functions are utilized to represent the solution in the outer flow field. At the inter-surface boundary, the continuity of the value of potential and the normal derivative of the potential(i.e. matching condition) is conserved. The present method has better computational efficiency than the previous LFEM and the integral equation method of Frank. This enhanced computational efficiency is presumably due to the fact that the present method gives a symmetric coefficient matrix and requires less computational time in calculating the influence coefficient matrix of Green function than the integral equation method. And the irregular frequency desen't exist because the uniqueness of the solution is assured by the such that the exact free surface condition is satisfied on the boundary of the localized finite element region(i.e. inner region). As an example of the above method, the hydrodynamic forces for the circular cylinder and the rectangular cylinders are calculated. In the computed results, the small number of singularity distribution segments($3{\sim}6$) give good result relative to Ursell's and Vugts'.

  • PDF

사이징제에 따른 유리섬유/불포화 폴리에스터 복합재료의 계면 접착력과 기계적 물성 (Influence of Sizing Agent on Interfacial Adhesion and Mechanical Properties of Glass Fiber/Unsaturated Polyester Composites)

  • 박수진;김택진;이재락;홍성권;김영근
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.326-332
    • /
    • 2000
  • 유리섬유/불포화 폴리에스터 복합재료에서 섬유에 처리된 사이징제가 복합재료의 최종 물성에 미치는 영향을 상온에서의 접촉각 측정을 통해 고찰하였다. 본 연구에서는 폴리비닐알코올, 폴리에스터, 그리고 에폭시계 사이징제를 사용하여 유리섬유의 표면을 처리하였으며 각각의 물성을 비교하였다. 유리섬유의 접촉각은 증류수와 diiodomethane을 젖음액으로 사용하여 Washburn식을 기본으로 한 wicking법으로 측정하였다. 결과적으로 접촉각 측정에 의해 구한 표면자유에너지는 에폭시계 사이징제로 치리된 유리섬유에서 최대값을 나타내었다. 복합재료의 층간 전단 강도 (ILSS)와 파괴 인성 ( $K_{IC}$ )의 측정 결과로부터 사이징제의 처리에 따라 계면 결합력이 증진되며 결과적으로 복합재료의 기계적 강도가 증가함을 알 수 있었다. 이것은 복합재료에서 유리섬유의 표면 자유에너지 증가에 기인한다고 사료된다.

  • PDF

Reconstruction of Chronic Complicated Scalp and Dural Defects Using Acellular Human Dermis and Latissimus Dorsi Myocutaneous Free flap

  • Lee, Jun Hee;Choi, Seok Keun;Kang, Sang Yoon
    • 대한두개안면성형외과학회지
    • /
    • 제16권2호
    • /
    • pp.80-83
    • /
    • 2015
  • We present reconstruction of a complicated scalp-dura defect using acellular human dermis and latissimus dorsi myocutaneous free flap. A 62-year-old female had previously undergone decompressive craniectomy for intracranial hemorrhage. The cranial bone flap was cryopreserved and restored to the original location subsequently, but necessitated removal for a methicillin-resistant Staphylococcal infection. However, the infectious nidus remained in a dermal substitute that was left over the cerebrum. Upon re-exploration, this material was removed, and frank pus was observed in the deep space just over the arachnoid layer. This was carefully irrigated, and the dural defect was closed with acellular dermal matrix in a watertight manner. The remaining scalp defect was covered using a free latissimus dorsi flap with anastomosis between the thoracodorsal and deep temporal arteries. The wound healed well without complications, and the scalp remained intact without any evidence of cerebrospinal fluid leak or continued infection.