• Title/Summary/Keyword: Matrix vector

Search Result 759, Processing Time 0.023 seconds

A New Reduced Common-mode Voltage SVM Method for Indirect Matrix Converters with Output Current Ripple Minimization

  • Tran, Quoc-Hoan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.383-384
    • /
    • 2015
  • This paper presents a new space vector modulation (SVM) method for indirect matrix converters (IMCs) to reduce commonmode voltage as well as minimize output current ripple in a high voltage transfer ratio. In the proposed SVM, the three-vector modulation scheme is used in the rectifier stage, while the nonzero state modulation technique, where the three nearest active vectors are selected to synthesize the desired output voltage, is applied to inverter stage to reduce the CMV. The proposed SVM method can significantly reduce the output current ripple and common-mode voltage of the IMC without any extra hardware. Simulated results are provided to demonstrate the effectiveness of the proposed SVM method.

  • PDF

Development of PMSG Wind Power System Model using Wind Turbine Simulator and Matrix Converter (풍력터빈시뮬레이터와 매트릭스 컨버터를 적용한 PMSG 풍력발전 시스템 모델 개발)

  • Yun, Dong-Jin;Han, Byung-Moon;Cha, Han-Ju;Li, Yu-Long;Choi, Nam-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1130-1137
    • /
    • 2009
  • This paper describes a scaled model development of PMSG wind power system using wind turbine simulator and matrix converter. The wind turbine simulator, which consists of an induction motor with vector drive, calculates the output torque of a specific wind turbine using simulation software and sends the torque signal to the vector drive after scaling down the calculated value. The operational feasibility of interconnected PMSG system with matrix converter was verified by computer simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was conformed by experimental works with a laboratory scaled-model of wind power system. The simulation and experimental results confirm that matrix converter can be effectively applied for the PMSG wind power system.

Multivariate control charts based on regression-adjusted variables for covariance matrix

  • Kwon, Bumjun;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.937-945
    • /
    • 2017
  • The purpose of using a control chart is to detect any change that occurs in the process. When control charts are used to monitor processes, we want to identify this changes as quickly as possible. Many problems in quality control involve a vector of observations of several characteristics rather than a single characteristic. Multivariate CUSUM or EWMA charts have been developed to address the problem of monitoring covariance matrix or the joint monitoring of mean vector and covariance matrix. However, control charts tend to work poorly when we use the highly correlatted variables. In order to overcome it, Hawkins (1991) proposed the use of regression adjustment variables. In this paper, to monitor covariance matrix, we investigate the performance of MEWMA-type control charts with and without the use of regression adjusted variables.

Analysis of Fish Expression Vectors for Construction of Two MARs Expression Vector System in Fish Cell Line

  • Lim, Hak-Seob;Park, Jin-Young;Hwnag, Jee-Hwang;Kim, Moo-Sang;Lee, Hyung-Ho
    • Journal of Aquaculture
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • In previously study we isolated several fish matrix attachment regions (MARs) capable of replicating the plasmid by itself. In this study we construct a fish expression vector pBaEGFP(+) containing mud loach ${\beta}$-actin promoter EGFP as reporter gene and SV40 signal. To analyze the effects of the fish expression vector respectively. The fish ARS containing constructs pBaEGFP(+)-ARSs were transfected cells with pBaEGFP(+)-ARS101 and pBaEGFP(+)-ARS223 reduced 10 days to 25 days and then was constant to 30 days after transfection while that of the control vector without ARS element was basal level. The intensity of both constructs showed about 30fold of the intensity compared with the control vector on 30days after transfection individually .E. coli back-transformation analysis shows that pBaEGFP(+)-ARS223 and pBaEGFP(+)-ARS905 maintain in episomal state at least 30 days after transfection. The result indicates that both may be able to replicate the vector in BF-2 cell. Therefore the matrix-attached ARSs enhancing expression of the reporter gene might be useful as a component o the expression vector for transgenic studies.

  • PDF

Two dimensional variable-length vector storage format for efficient storage of sparse matrix in the finite element method (유한요소법에서 희소행렬의 효율적인 저장을 위한 2차원 가변길이 벡터 저장구조)

  • Boo, Hee-Hyung;Kim, Sung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.9-16
    • /
    • 2012
  • In this paper, we propose the two dimensional variable-length vector storage format which can be used for efficient storage of sparse matrix in the FEM (finite element method). The proposed storage format is the method storing only actual needed non-zero values of each row on upper triangular matrix with the total rows N, by using two dimensional variable-length vector instead of $N{\times}N$ large sparse matrix of entire equation of finite elements. This method only needs storage spaces of the number of minimum 1 to maximum 5 in 2D grid structure and the number of minimum 1 to maximum 14 in 3D grid structure of analysis target. The number doesn't excess two times although involving index number. From the experimental result, we can find out that the proposed storage format can reduce the memory space more effectively, as the total number of nodes increases, than the existing skyline storage format storing maximum column height.

Analytical Proof of Equivalence of ISF, and Floquet Vector-Based Oscillator Phase Noise Theories (ISF와 Floquet 벡터에 기초한 발진기 위상잡음 이론의 등가성에 대한 해석적 증명)

  • Jeon, Man-Young
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.559-563
    • /
    • 2013
  • This paper analytically proves the equivalence between two main oscillator phase noise theories, which are based on the ISF, and Floquet vector, respectively. For this purpose, this study obtains the power spectral density matrix from the ISF-based phase noise theory. As a result, one can prove that the power spectral density matrix obtained from the ISF-based phase noise theory is essentially equivalent to the power spectral density matrix presented by the Floquet vector-based phase noise theory, which manifests the equivalence of the two main theories. This study is intended to provide deeper insight into the relations between the two main theories.

Fault Identification Matrix in Linear Networks (선형회로에 있어서의 결함식별 매트릭스)

  • 임광호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 1972
  • A method utilizing vector representation is investigated for determining a faulty elenlent in passive and active networks by simple external measurements. A large system may be considered as an interconnection of a number of subnetlvorks. By utilizing the relationships between the magintudes of a transfer function at various frequencies and the deviations of a circuit element, the fault simulation curves can be drawn. The fault identification regions are defined from the fault simulation curves. A fault identlfication matrix is constructed corresponding the defined fault identification regions. The fault identification matrix, when premultiplied by a vector whose components are measured from a network, yieldg another vector whose components identify a network element which is faulty. A test procedure for the fault identification method is presented and verified by experiments.

  • PDF

A Study on Space Vector Modulation Method to Improve Input Power Factor of Matrix Converter (매트릭스 컨버터의 입력 역률 향상을 위한 공간벡터변조기법에 관한 연구)

  • Nguyen, Hoang M.;Lee, Hong-Hee;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.476-486
    • /
    • 2008
  • It is very important to design the input filter optimally in matrix converters. But, the input power factor is deteriorated in spite of the optimal filter design due to the existence of inductor and capacitor included in the filter, and it is hard to keep high power factor in the whole operating range which is one of the major advantages of the matrix converters because the power factor is changed according to the output frequency and the load current. In this paper, we introduce the new space vector modulation method which can preserve the input power factor almost unity even though the output load or the output frequency is varied. It is also presented how to implement the proposed method effectively.

A Singular Value Decomposition based Space Vector Modulation to Reduce the Output Common-Mode Voltage of Direct Matrix Converters

  • Guan, Quanxue;Yang, Ping;Guan, Quansheng;Wang, Xiaohong;Wu, Qinghua
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.936-945
    • /
    • 2016
  • Large magnitude common-mode voltage (CMV) and its variation dv/dt have an adverse effect on motor drives that leads to early winding failure and bearing deterioration. For matrix converters, the switch states that connect each output line to a different input phase result in the lowest CMV among all of the valid switch states. To reduce the output CMV for matrix converters, this paper presents a new space vector modulation (SVM) strategy by utilizing these switch states. By this mean, the peak value and the root mean square of the CMV are dramatically decreased. In comparison with the conventional SVM methods this strategy has a similar computation overhead. Experiment results are shown to validate the effectiveness of the proposed modulation method.

GPU-Based ECC Decode Unit for Efficient Massive Data Reception Acceleration

  • Kwon, Jisu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1359-1371
    • /
    • 2020
  • In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.