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Abstract

The purpose of using a control chart is to detect any change that occurs in the
process. When control charts are used to monitor processes, we want to identify this
changes as quickly as possible. Many problems in quality control involve a vector of
observations of several characteristics rather than a single characteristic. Multivariate
CUSUM or EWMA charts have been developed to address the problem of monitoring
covariance matrix or the joint monitoring of mean vector and covariance matrix. How-
ever, control charts tend to work poorly when we use the highly correlatted variables.
In order to overcome it, Hawkins (1991) proposed the use of regression adjustment vari-
ables. In this paper, to monitor covariance matrix, we investigate the performance of
MEWMA-type control charts with and without the use of regression adjusted variables.

Keywords: Average run length, covariance matrix, multivariate control chart, regression
adjusted variables.

1. Introduction

Many problems in quality control involve a vector of observations of several characteristics
rather than a single characteristic. Although one of variables could monitor the process using
separate control charts to the extent that these measurements are mutually correlated, it
will obtain better sensitivity using multivariate methods that exploit the correlations.

The first multivariate control charts were Shewhart-type charts proposed by Hotelling
(1947). CUSUM and EWMA charts are much more effective than Shewhart-type charts
for detecting small and moderate shifts in process parameter, and multivariate versions of
CUSUM and EWMA charts has been developed. The development of multivariate CUSUM
and EWMA charts has concentrated on the problem of monitoring mean vector µ. Jeong and
Cho (2012a) studied multivariate Shewhart control charts for the mean vector or covariance
matrix. Jeong and Cho (2012b) studied multivariate EWMA control charts for monitoring
the covariance matrix. Choi and Cho (2016) studied multivariate CUSUM control charts for
monitoring the covariance matrix. Only a few multivariate CUSUM or EWMA charts have
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been developed for the problem of monitoring covariance matrix Σ or the joint monitoring of
µ and Σ. But the control charts did not work when we made control charts using the variables
that have high correlation. So Hawkins (1991) proposed the use of regression adjustment
variables.

The objective of this paper is to monitor Σ. We use MEWMA-type control charts that
are based on the squared deviations of the observations from the target. These control
charts were proposed by Reynolds and Cho (2006, 2011). And we have found that the use
of regression adjusted variables (Hawkins, 1991, 1993) improves control chart performance
in many cases, so we investigate the performance of control charts with and without the use
of regression adjusted variables.

2. Definition of control charts

2.1. Notation and assumptions

We suppose that measurement is X, a p-component vector, which is assumed to follow
a multivariate normal distribution. It will be convenient to let σ represent the vector of
standard deviations of the p variables. Suppose that the objective are to monitor Σ where the
target values Σ0, σ0 and µ0 are known. It is assumed that the in-control process covariance
matrix is as follows;

Σ0 =


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

 .

Assume that the process will be monitored by taking a sample of n ≥ p independent
observation vectors at sampling point, where the sampling points are d time units apart.
Let Xkij represent observation j (j=1,2,. . .,n) for variable i (i=1,2,. . .,p) at sampling point
k (k=1,2,. . .), and let the corresponding standardized observation be

Zkij =
(Xkij − µ0i)

σ0i
,

where µ0i is the ith component of µ0, and σ0i is the ith component of σ0. Also let

zkj = (Zk1jZk2j · · ·Zkpj), j = 1, 2, . . . , n

be the vector of standardized observations for observations vector j at sampling point k.
Let ΣZ be the covariance matrix of zkj , and let ΣZ0 be the in-control value of ΣZ . The
in-control distribution of Zkij is standard normal, so ΣZ0 is also the in-control correlation
matrix of the unstandardized observations.

Some control statistics used for monitoring Σ are functions of the sample estimates of ΣZ .
At sampling point k, let Σ̂Zk be the maximum likelihood estimator of ΣZ , where the (i, i

′
)

element of Σ̂Zk is
∑n
j=1

ZkijZki
′
j

n .
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2.2. Regression adjustment variables

When the variables are highly correlated, however, the performance of control charts
will be poorer than that of the best procedures that capitalize on the correlation between
variables. The MEWMA can be designed to have faster detection capability. Furthermore
Hotelling T 2 is not optimal for more structured shifts in the mean, such as shifts in only a
few of the process variables. It also turns out that the Hotelling T 2, and any method that
uses the quadratic form structure of the Hotelling T 2 test statistic (such as MEWMA), will
be sensitive to shifts in the variance as well as to shifts in the mean.

Hawkins (1991,1993) has developed a procedure called regression adjustment that is po-
tentially very useful. It consists of control charts of the resuduals from each variable obtained
when that variable is regressed on all the others. The vector of regression adjusted variables,
say akj = (Ak1j Ak2j · · · Akpj)

′
corresponding to the vector of standardized observa-

tions zkj , is given by

akj = (diagΣ−1
Z0)−

1
2 Σ−1

Z0zkj ,

where B = (diagΣ−1
Z0)−

1
2 Σ−1

Z0 is said to be transformation matrix and

(diagΣ−1
Z0)−

1
2 =


√

1− ρ2 0 · · · 0

0
√

1− ρ2 · · · 0
...

...
. . .

...

0 0 · · ·
√

1− ρ2

 .

Then akj has mean µA = (diagΣ−1
Z0)−

1
2 Σ−1

Z0µZ , where µZ = E(zkj), and covariance matrix

ΣA = (diagΣ−1
Z0)−

1
2 Σ−1

Z0ΣZΣ−1
Z0(diagΣ−1

Z0)−
1
2 . In the in-control case, µA0 = 0 and ΣA =

(diagΣ−1
Z0)−

1
2 Σ−1

Z0(diagΣ−1
Z0)−

1
2 is the correlation matrix of akj .

Regression adjustment has some feature. If the proper set of variables is included in the
regression model, the residuals from the model will typically be uncorrelated, even though
the original variable of exhibited correlation variables. And it occurs when the process has
a distinct hierarchy of variables, such as a set of input process variables and a set of out-
put variables. Because of this nice feature, the regression adjustment procedure has many
possible applications in process plants where many of the variables are highly correlated.
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2.3. Set of MEWMA control charts

The MEWMA control chart for monitoring Σ is based on EWMA statistic. And we use
MEWMA-type statistic based on squared standardized deviations from target which was
propesed by Reynolds and Cho (2006). We define two MEWMA-type statistics with and
without regression adjustment variables. First, at sampling point k let the EWMA statis-
tic of squared standardized deviations from target for normal variable (without regression
adjustment) i be

EZki = (1− λ)EZk−1 + λ(

n∑
j=1

Z2
kij

n
), i = 1, 2, · · · , p, (2.1)

where EZ0i = 1 and 0 < λ ≤ 1.
The first form of MEWMA-type statistic based on EZki is

MZ
k =

n

2ck
(EZk1 − 1, · · · , EZkp − 1)(Σ

(2)
Z0)−1(EZk1 − 1, · · · , EZkp − 1)

′
, (2.2)

where ck = λ[1−(1−λ)2k]
(2−λ) , k = 1, 2, · · · . This statistic is used with a UCL and will be called

the MZ chart. The MZ statistic follows the standard form of an MEWMA in the sense that
the in-control mean is subtracted from each EZki.

Second, The MEWMA charts based on the squared deviations of the regression adjusted
variables from target are defined with the components of akj used in place of the components
of zkj , and ΣZ0 replaced with ΣA0. At sampling point k let the EWMA statistic of squared
standardized deviations from target for regression adjustment variable i be

EAki = (1− λ)EAk−1 + λ(

n∑
j=1

A2
kij

n
), i = 1, 2, · · · , p, (2.3)

where EA0i = 1 and 0 < λ ≤ 1.
The form of MEWMA-type statistic based on EAki is

MA
k =

2ck
n

(EAk1 − 1, · · · , EAkp − 1)(Σ
(2)
A0)−1(EAk1 − 1, · · · , EAkp − 1)

′
, (2.4)

where ck = λ[1−(1−λ)2k]
(2−λ) , k = 1, 2, · · · .

This statistic is also used with a UCL and will be called the MA chart. The MA statistic
follows the standard form of an MEWMA in the sense that the in-control mean is subtracted
from each EAki. The control charts based on squared deviations from target are very effective
for detecting chages in Σ.

2.4. Measures of control chart performance

We will compare multivariate control charts in terms of the ARL (Average run length)
required to detect shifts in process parameters, when each chart has the same false alarm
rate. If there is a shift in a process parameter, the ARL is the appropriate measure of
detection time for this shift.
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The Markov chain and integral equation methods can be used to evaluate properties of
the multivariate EWMA chart (Rigdon (1995a, b), Prabhu and Runger (1997)), but it is
not feasible to use these methods for the regression adjustment of charts. Thus simulation
with 5,000 runs was used. All of the schemes being compared have an in-control ARL of 800
hours where the sampling interval d is assumed to be 1 hour.

3. Numerical results

When the production process changes, the following types of shifts in the covariance
matrix Σ are considered; (1) covariances are changed and variances are not changed, (2)
variances are changed and covariances are not changed, (3) variances and covariances are
simultaneously changed.

The ability of a control chart to detect any shifts in the production process is determined
by the length of time required to signal. Thus, a good control chart detects shifts quickly in
the process when the process is out-of-control state, and produce few false alarms when the
process is in-control state.

Table 3.1 Values of h when the in-control ARL is approximately 800

λ=0.05 λ=0.1 λ=0.3

MA chart
n = 2, p = 2 28.7697 39.7537 69.7074
n = 4, p = 4 22.1106 27.1261 40.5803

MZ chart
n = 2, p = 2 28.9519 39.8798 69.6477
n = 4, p = 4 98.7886 127.2629 204.0411

The control limits h and ARLs for multivariate EWMA control charts are obtained by
using 5,000 runs. Table 3.1 gives the values of h for p = 2, 4 λ = 0.05, 0.1, 0.3 when the
in-control ARL is approximately 800.

3.1. Changes in covariances

Table 3.2 MA charts for covariances (ρ0 = 0.9)

λ = 0.05 λ = 0.1 λ = 0.3
n = 2 n = 4 n = 2 n = 4 n = 2 n = 4
p = 2 p = 4 p = 2 p = 4 p = 2 p = 4

ρ=0.90 800.65 800.75 800.66 800.45 800.19 800.42
0.81 15.44 5.96 15.54 5.07 19.91 4.81
0.72 7.54 3.09 7.04 2.59 7.52 2.15
0.63 5.15 2.18 4.77 1.85 4.71 1.53
0.54 4.05 1.76 3.72 1.49 3.57 1.28
0.36 2.99 1.34 2.75 1.20 2.59 1.10
0.27 2.69 1.23 2.50 1.13 2.32 1.06
0.18 2.48 1.17 2.29 1.09 2.14 1.04

Tables 3.2 and 3.3 give the ARLs of MA charts and MZ charts for n = 2, 4 and p = 2, 4
when covariances are changed and variances are not changed. Here the changed values of
ρ considered in Tables 3.2 and 3.3 are those of decreased from 0.9 to 0.18, respectively.
As shown in Table 3.2 the MA charts for monitoring the covariance matrix are effective in
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Table 3.3 MZ charts for covariances (ρ0 = 0.9)

λ = 0.05 λ = 0.1 λ = 0.3
n = 2 n = 4 n = 2 n = 4 n = 2 n = 4
p = 2 p = 4 p = 2 p = 4 p = 2 p = 4

ρ=0.90 800.09 800.27 800.67 800.41 800.47 800.00
0.81 169.93 155.78 198.54 175.20 181.31 177.76
0.72 204.39 231.95 234.63 254.09 222.90 252.73
0.63 256.79 354.22 288.87 387.18 275.44 408.21
0.54 306.14 561.46 347.22 620.81 346.33 690.04
0.36 440.34 1734.57 510.63 2119.53 574.62 2916.98
0.27 523.11 3169.28 625.36 4325.29 741.75 7299.28
0.18 599.70 5686.35 729.48 9038.71 927.59 12225.28

detecting only changes in covariance. On the other hand, shown in Table 3.3 the ARLs of
MZ charts for monitoring the covariance matrix is increased by changing ρ.

3.2. Changes in variances

Table 3.4 MA charts for variances (ρ0 = 0.9)

λ = 0.05 λ = 0.1 λ = 0.3
n = 2 n = 4 n = 2 n = 4 n = 2 n = 4
p = 2 p = 4 p = 2 p = 4 p = 2 p = 4

c = 1.00 800.65 800.75 800.66 800.45 800.19 800.42

c = 1.21

149.47 179.38 270.00
154.59 64.12 182.33 76.73 259.90 136.66
97.27 42.01 119.85 48.51 181.05 90.08

33.91 37.44 68.37

c = 1.44

35.36 38.21 60.88
41.05 17.60 46.63 17.13 73.28 24.69
35.16 13.62 39.67 12.72 62.71 17.37

12.91 12.02 15.87

c = 1.69

15.41 14.35 18.15
18.49 8.84 18.88 7.72 25.50 8.27
19.75 7.46 20.45 6.48 28.93 6.63

7.82 6.78 7.09

c = 4.00

2.09 1.82 1.58
2.75 1.57 2.55 1.39 2.38 1.24
4.48 1.52 4.09 1.33 4.02 1.18

1.99 1.69 1.42

Tables 3.4 and 3.5 give p ARLs of MA charts and MZ charts for n = 2, 4 and p = 2, 4
when variances are changed and covariances are not changed. In each cell, there are p
ARLs when 1, 2, · · · , p variances are changed, respectively. Here standard deviations
are changed from σ0 to σ =

√
cσ0 for c = 1.21, 1.44, 1.69, 4.00. As shown in Tables 3.4

and 3.5, MA charts are effective in detecting changes in variances.
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Table 3.5 MZ charts for variances (ρ0 = 0.9)

λ = 0.05 λ = 0.1 λ = 0.3
n = 2 n = 4 n = 2 n = 4 n = 2 n = 4
p = 2 p = 4 p = 2 p = 4 p = 2 p = 4

c = 1.00 800.09 800.27 800.67 800.41 800.47 800.00

c = 1.21

316.38 348.83 449.81
225.80 152.80 264.29 178.69 342.26 268.35
97.23 88.01 119.29 103.95 177.62 168.16

58.18 67.58 114.17

c = 1.44

143.43 168.23 254.17
91.05 54.57 111.26 62.94 167.05 106.54
35.39 30.42 40.00 33.08 62.96 54.37

20.99 21.54 32.26

c = 1.69

77.07 90.25 148.52
49.34 28.71 57.54 30.82 90.06 49.96
19.87 17.12 20.65 17.04 29.21 24.08

12.26 11.66 14.72

c = 4.00

11.19 10.49 12.72
8.55 5.43 8.11 4.84 8.89 4.78
4.46 3.75 4.09 3.33 4.02 3.07

2.96 2.61 2.34

3.3. Changse in variances and covariances

Table 3.6 MA charts for variances and covariances (ρ0 = 0.9)

λ = 0.05 λ = 0.1 λ = 0.3
n = 2 n = 4 n = 2 n = 4 n = 2 n = 4
p = 2 p = 4 p = 2 p = 4 p = 2 p = 4

c = 1.00 ρ = 0.90 800.65 800.75 800.66 800.45 800.19 800.42

c = 1.21

ρ = 0.81

5.30 4.43 4.00
11.94 4.78 11.47 3.99 13.99 3.51
10.25 4.43 10.00 3.72 11.69 3.22

4.14 3.47 3.02

ρ = 0.72

2.86 2.38 1.98
6.35 2.69 5.92 2.24 6.12 1.85
5.69 2.54 5.27 2.12 5.37 1.76

2.41 2.03 1.67

c = 1.44

ρ = 0.81

4.56 3.80 3.35
9.06 3.80 8.44 3.20 9.64 2.72
7.65 3.41 7.17 2.85 7.72 2.40

3.15 2.64 2.22

ρ = 0.72

2.63 2.18 1.82
5.38 2.30 4.95 1.95 4.94 1.62
4.65 2.12 4.27 1.80 4.17 1.49

1.99 1.69 1.41

c = 1.69

ρ = 0.81

3.86 3.22 2.74
6.97 3.08 6.51 2.58 6.90 2.14
5.99 2.71 5.63 2.26 5.72 1.91

2.56 2.15 1.78

ρ = 0.72

2.37 1.99 1.67
4.58 2.02 4.19 1.72 4.09 1.44
3.89 1.83 3.57 1.55 3.43 1.32

1.71 1.46 1.26

c = 4.00

ρ = 0.81

1.61 1.45 1.27
2.37 1.27 2.17 1.16 2.03 1.08
2.57 1.17 2.34 1.09 2.19 1.03

1.21 1.10 1.05

ρ = 0.72

1.39 1.26 1.14
2.08 1.13 1.93 1.07 1.81 1.03
1.99 1.06 1.86 1.03 1.75 1.01

1.05 1.02 1.00
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Table 3.7 MZ charts for variances and covariances (ρ0 = 0.9)

λ = 0.05 λ = 0.1 λ = 0.3
n = 2 n = 4 n = 2 n = 4 n = 2 n = 4
p = 2 p = 4 p = 2 p = 4 p = 2 p = 4

c = 1.00 ρ = 0.90 800.09 800.27 800.67 800.41 800.47 800.00

c = 1.21

ρ = 0.81

416.29 495.26 692.28
254.54 180.93 317.78 228.09 445.18 390.71
105.75 101.08 131.47 130.78 218.94 241.31

63.59 80.04 153.98

ρ = 0.72

583.25 754.72 1185.15
293.67 221.03 378.52 317.94 554.50 618.53
113.09 112.78 152.21 159.86 268.12 358.49

67.63 93.56 218.22

c = 1.44

ρ = 0.81

167.43 216.00 369.27
99.32 58.53 123.90 72.32 195.59 142.87
36.79 31.75 41.92 36.14 70.49 66.94

21.41 22.65 38.66

ρ = 0.72

204.24 294.99 571.90
104.19 62.30 140.47 84.27 243.24 199.23
37.41 32.22 44.86 38.59 80.72 85.93

21.42 23.32 45.84

c = 1.69

ρ = 0.81

85.90 107.72 201.45
50.54 30.06 63.18 33.76 100.78 61.63
20.31 17.53 21.59 17.55 32.83 27.94

12.48 11.89 15.96

ρ = 0.72

94.74 132.08 301.63
52.81 30.12 66.21 35.28 119.79 76.07
20.32 17.37 21.75 17.96 34.87 31.58

12.20 11.88 17.45

c = 4.00

ρ = 0.81

11.12 10.59 13.29
8.43 5.33 8.12 4.83 8.96 4.79
4.47 3.72 4.03 3.28 4.00 3.02

2.90 2.53 2.29

ρ = 0.72

11.14 10.68 14.09
8.51 5.31 8.10 4.78 9.13 4.76
4.36 3.69 3.98 3.24 3.97 3.00

2.88 2.52 2.26

For n = 2, 4 and p = 2, 4, Tables 3.6 and 3.7 give p ARLs in each cell when 1, 2, · · · , p
variances and p covariances are simultaneously changed, respectively. Here standard devia-
tions are changed from σ0 to σ =

√
cσ0 for c = 1.21, 1.44, 1.69, 4.00 and covariances are

changed from ρ0 = 0.9 to ρ = 0.81, 0.72. As shown in Tables 3.6 and 3.7, MA charts are
effective in detecting changes in variances and covariances.

4. Summary and concluding remark

This paper is a study on the multivariate EWMA control charts for monitoring covariance
matrix. These multivariate control charts are constructed by using the two different control
statistics which are based on squared deviations with and without regression adjustment
variables from target variables.

We consider MEWMA-type control charts for n = 2, 4, p = 2, 4, ρ0 = 0.9 and λ =
0.05, 0.10, 0.30. We can get control limits and ARLs of the proposed multivariate control
charts by using simulations. The performance of these proposed multivariate control charts
is compared with their ARLs.

The objective of monitoring is assumed to be the detection of small as well as large shifts
in changes Σ and as quickly as highly correlated variables shifts. The conclusions from this
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investigation can be summarized as follows. As shown Tables 3.2-3.7, we can confirm that
MA charts based on squared deviations using regression adjustment variables from target will
effectively detect in Σ than MZ charts. Also using regression adjustment of the variables
improves overall performance when the variables are correlated. The MA chart based on
regression adjustment variables from target are recommended here because they offer very
fast detection of changes in Σ and good working when exist highly correlated variables.
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