• Title/Summary/Keyword: Matrix structures

Search Result 1,284, Processing Time 0.029 seconds

Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation (보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능)

  • Balaguru, P.N.;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

Analysis of Fatigue Damage at Wheel under Variable Load (불규칙 하중을 받는 휠에서의 피로 파손 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.753-759
    • /
    • 2010
  • The variable fatigue load is simulated in this study. The stability and the life of the material are analyzed theoretically by Ansys program. These results are successfully applied to the practical wheel to predict the prevention of fracture and the endurance. The life and the damage on the every part of the fatigue specimen can be predicted. As the available lives are compared for every loading variation, the rain flow and damage matrix results can be helpful in determining the effects of small stress cycles in any loading history. The rainbow and damage matrices illustrate the possible effects of infinite life. The safety and stability of wheel and the other practical structures according to the variable load can be estimated by using the results of this study.

STRUCTURES OF IDEMPOTENT MATRICES OVER CHAIN SEMIRINGS

  • Kang, Kyung-Tae;Song, Seok-Zun;Yang, Young-Oh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.721-729
    • /
    • 2007
  • In this paper, we have characterizations of idempotent matrices over general Boolean algebras and chain semirings. As a consequence, we obtain that a fuzzy matrix $A=[a_{i,j}]$ is idempotent if and only if all $a_{i,j}$-patterns of A are idempotent matrices over the binary Boolean algebra $\mathbb{B}_1={0,1}$. Furthermore, it turns out that a binary Boolean matrix is idempotent if and only if it can be represented as a sum of line parts and rectangle parts of the matrix.

The Analysis of Fatigue Damage in Structure under Variable Load (변동 하중을 받는 구조물에서의 피로 파손 해석)

  • 한문식;조재웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.85-93
    • /
    • 2004
  • The variable fatigue load is simulated in this study, The stability and the life of the material are analyzed theoretically by the program of Ansys workbench. These results are successfully applied to the practical structures to predict the prevention of fracture and the endurance, The life and the damage on the every part of the fatigue specimen can be predicted. As the available lives are compared for every loading variation, the rainflow and damage matrix results can be helpful in determining the effects of small stress cycles in any loading history. The rainflow and damage matrices illustrate the possible effects of infinite life. The safety and stability of fatigue specimen according to the variable load can be estimated by using the results of this study.

An Analysis of the Reinforced Concrete Circular Ring Sector Plates with Arbitrary Boundary Conditions (I) - Part I Effects of open-angle - (임의의 경계조건을 갖는 철근 콘크리트 선형판의 해석 -제1보 개각의 영향)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.94-103
    • /
    • 1991
  • This study was carried out to investigate the engineering characteristics of the R.C circular ring sector plate with various boundary conditions and then to propose a rational and paraical method for application of finite element method to R.C structures. The stiffness matrix of the circular ring sector plate was obtained by using the multi-base coordinate system in which the base-coordinate systems were constructed for each nodal point of the quadrilateral element in order to reflect the complicated boundary conditions conveniently and correctly. The R.C element stiffness matrix was constructed by adding the stiffness coefficients of the steel-bar element into the plate bending element stiffness matrix. Herein, the steel-bar element was treated as the common beam element. Using the above method, the effects of steel-bar can be considered without increasing of the numbers of element and nodal points.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Modified Stiffness Matrix of Frame Reflecting the Effect of Local Cracks (국부적 균열의 영향을 고려한 수정된 프레임 강성행렬)

  • 이상호;송정훈;임경훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.353-360
    • /
    • 2002
  • The objective of this study is to develop a technique that analyzes the global behavior of frame structures with local cracks. The technique is based on frame analysis and uses the stiffness matrix of cracked frame element. An algorithm proposed here analyzes a frame structure with local transverseedge cracks, considering the effects of crack length and location. Stress intensity factors are employed to calculate additional local compliance due to the cracks based on linear elastic fracture mechanics theory, and then this local compliance is utilized to derive the stiffness matrix of the cracked frame element. In order to verify the accuracy and reliability of the proposed approach, numerical results are compared with those of Finite Element Method for the cracked frame element, and the effects of single crack on the behavior of truss structure are also examined.

  • PDF

Wave propagation in unbounded elastic domains using the spectral element method: formulation

  • Meza Fajardo, Kristel C.;Papageorgiou, Apostolos S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.383-411
    • /
    • 2012
  • The objective of the present paper is to review and implement the most recent developments in the Spectral Element Method (SEM), as well as improve aspects of its implementation in the study of wave propagation by numerical simulation in elastic unbounded domains. The classical formulation of the method is reviewed, and the construction of the mass matrix, stiffness matrix and the external force vector is expressed in terms of matrix operations that are familiar to earthquake engineers. To account for the radiation condition at the external boundaries of the domain, a new absorbing boundary condition, based on the Perfectly Matched Layer (PML) is proposed and implemented. The new formulation, referred to as the Multi-Axial Perfectly Matched Layer (M-PML), results from generalizing the classical Perfectly Matched Layer to a medium in which damping profiles are specified in more than one direction.

ON REDUCTION OF K-ALMOST NORMAL AND K-ALMOST CONJUGATE NORMAL MATRICES TO A BLOCK TRIDIAGONAL FORM

  • ASIL, K. NIAZI;KAMALVAND, M. GHASEMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.267-282
    • /
    • 2019
  • This paper examines how one can build a block tridiagonal structure for k-almost normal matrices and also for k-almost conjugate normal matrices. We shall see that these representations are created by unitary similarity and unitary congruance transformations, respectively. It shall be proven that the orders of diagonal blocks are 1, k + 2, 2k + 3, ${\ldots}$, in both cases. Then these block tridiagonal structures shall be reviewed for the cases where the mentioned matrices satisfy in a second-degree polynomial. Finally, for these processes, algorithms are presented.

A Model-based Study on the Expansion of Measured Data and the Damage Detection (모델기반의 계측데이터 확장 및 손상 추정에 관한 연구)

  • Kang, Taik-Seon;Lee, Byeong-Hyeon;Eun, Hee-Chang
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.3-10
    • /
    • 2018
  • It's not practical to collect all information at the entire degrees of freedom of finite element model. The incomplete measurements should be expanded for subsequent analysis and damage detection. This work presents the analytical methods to expand the incomplete static or dynamic response data. Using the expanded data, introducing the concept of residual force, and minimizing the performance index expressed as the stiffness matrix and its difference before and after damage, the variation in stiffness matrix is derived. Based on the difference in the stiffness matrix, the damage detection method of structures is also provided. The validity of the proposed methods is illustrated in a numerical application, the numerical results are analyzed for applications, and the applicability of both methods is investigated.