• Title/Summary/Keyword: Matrix structure

Search Result 2,564, Processing Time 0.032 seconds

Vibrational Characteristics on the Cables in Cable Stayed Bridge (사장교 케이블의 진동거동 특성)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • Recently, a cable disconnection accident occurred due to a lightning strike at the Seohae Bridge located in Dangjin-Pyeongtaek City. This is a natural occurrence, but it is a recall that it is very important to review the safety issues due to the disconnection of cable bridges. In other words, the role of cables in cable bridges has a profound effect on the safety of the structure, and it has become necessary to grasp the effect on the entire structural system. The cable bridge is an economic bridge that builds the main tower and supports the bottom plate by cable. The influence of the cable is the main member, which is a big influence on the safety of the whole bridge system. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

Structure and Electrical Properties of PbTe Thin Film According To The Substrate Temperature (기판온도에 따른 PbTe 박막의 구조 및 전기적 물성)

  • Lee, Hea-Yeon;Choi, Byung-Chun;Jeong, Jung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.184-188
    • /
    • 1999
  • PbTe thin films of high quality were deposited on HF-treated Si(100) substrates at various substrate temperature by pulsed laser deposition technique. XRD patterns showed that PbTe layers were well-crystallized to a cubic phase with (h00) preferred orientation with the substrate temperature up to $300^{\circ}C$. PbTe films could not form at substrate temperature above $400^{\circ}C$ because of reevaporation of the Pb. According to AFM image, the surface of films was composed of small granular crystals and flat matrix. According to the increase of substrate temperature, the grain size at film surface becomes larger. By Hall-effect measurement, the carrier concentration and Hall mobility of n-type PbTe films grown by $T_{sub}=300^{\circ}C$ were $3.68{\times}10^{18}cm^{-3}$ and $148\;cm^2/Vs$, respectively.

  • PDF

Modeling on Ultrasonic Velocity in Concrete Considering Micro Pore Structure and Loading Conditions (공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링)

  • Kim, Yun Yong;Oh, Kwang-Chin;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.415-426
    • /
    • 2015
  • For a long time, evaluation of soundness and strength in concrete has been performed through ultrasonic velocity(UV), which is essential work in field assessment. Porosity in concrete is a major parameter indicating durability and strength, and UV passing concrete depends on porosity variation. In this paper, a modeling on UV through concrete is carried out considering porosity and the results are verified with those from test. Additionally UV in concrete under compression/tension loading condition is measured and UV modeling with loading condition is performed. Up to 50% of loading ratio, UV slightly increases and greatly drops at peak load in compression region, however it fluctuates in tensile region due to micro cracking in matrix. The proposed model shows a reasonable agreement with test results in control and compression region, and needs modification for tensile region considering micro cracks and local aggregate interlocking.

Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT

  • Mohammadimehr, Mehdi;Firouzeh, Saeed;Pahlavanzadeh, Mahsa;Heidari, Yaser;Irani-Rahaghi, Mohsen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.75-94
    • /
    • 2020
  • The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is subjected to a thermal load and resting on Pasternak's foundation. To accomplish the analysis, constitutive equations of each layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton's principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved analytically by applying Navier's method so that discretized governing equations are determined in form of dynamic matrix giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change and elastic foundation coefficients on natural frequencies of the sandwich microbeam.

Effect of Mori Follium Extract on the Melanogenesis and Skin Fibril Matrix (상엽(桑葉) 추출물의 미백활성 및 피부섬유구조 형성에 미치는 효과)

  • Kwon, O Jun
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.41-46
    • /
    • 2016
  • Objectives : The Skin is composed of multiple layers, including the epidermis, dermis, and hypodermis. It provides a vital barrier structure that protects vertebrates from external environmental antigens, solvents, ultraviolet light, microorganisms, toxins, and weather conditions. Although several biological effects of Mori Follium have been reported, beneficial effects of Mori Follium in skin health remain unclear. In this study, we prepared water extract of Mori Follium (MLE) and evaluated the effects on melanin accumulation and expression levels of skin fibril-related proteins.Methods : The cytotoxicities of MLE in B16F10 melanoma and human skin fibroblasts (HSF) were examined by MTT assay. Inhibitory effect of MLE on the α-MSH- and IBMX-induced melanosis in B16F10 melanoma was examined. The expression levels of fibronectin, collagen 1α2, and CCN2 in MLE-treated HSF were analyzed by reverse transcription-polymer chain reaction (RT-PCR) and western blotting.Results : The MLE treatment for 24 h did not affect to the B16F10 and HSF at concentrations of 1, 10, 50, 100, 200, 400 and 800 ㎍/ml. The MLE treatment for 72 h significantly and dose dependently suppressed melanin accumulation in B16F10 melanoma. In addition, the MLE treatment up-regulated expression levels of skin fibril-related genes such as fibronectin, collagen 1α2, and CCN2 in HSF. Our western blot analysis revealed MLE-induced up-regulation of skin fibril-related genes required the activation of CCN2 protein.Conclusions : In conclusion, these findings suggest that the MLE could be used in development of cosmetic natural material of maintaining healthy skin.

Activity Analysis of Misgurnus mizolepis Experssion Vector (미꾸라지 발현백터의 활성도 조사)

  • 함경훈;임학섭;황지연;박진영;김무상;이형호
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.457-463
    • /
    • 1998
  • An expression vector, pUC19N6-luc, containing nuclear matrix attachment region(MAR) isolated from Misgurnus mizolepis liver and control expressino vector, pUC19-luc, were constructed. After these vectors were transferred into CHSE-214 cell line by electroporation, the expression rate of luckferase gens, copy number of vectors and chromosome integration of vectors were analyzed by using assay of luciferase activity, PCR and Southern blotting. While the expression pattern of luciferase gene of pUC19-luc was shown in typicla transient ecpression pattern, that of pUC19N6-luc was highly increased at the 5 days after transfectrion. Although the cope number of pUC19N6-luc vector was higher than that of pUC19-luc vector, these vectors were integrated into chromosome at the same time point in the transfected CHSE-214 cells. In conclusion, the increase of luciferase gene expression of pUC19N6-luc was resulted from not the maintaining of the high copy number but the formation of transcription-favorable structure by MAR effect after chromosomal integration.

  • PDF

Microstructure and Mechanical Properties of $Al_2$O$_3$/t-ZrO$_2$ Particulate Composites (Al$_2$O$_3$/t-ZrO$_2$ 입자복합체의 미세구조 및 기계적 성질)

  • 심동훈;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.734-741
    • /
    • 1999
  • Al2O3/t-ZrO2 particulate composites were prepared by sintering at 150$0^{\circ}C$ and 1$600^{\circ}C$ for 2h in air and microstructure and mechanical properties of the composites were investigated. Although most ZrO2 particles existed at Al2O3 grain boundaries a few ZrO2 particles within Al2O3 grains. Al2O3 grain growth was depressed due to the pinning effect by ZrO2 particles. During sintering coarsening of intergranular ZrO2 particles occurred as a results of the elimination of ZrO2 intraagglomerate grain boundaries and the coalescence of dragged ZrO2 particles by migrating Al2O3 grain boundries. Changes in mechanical properties of Al2O3 composites were dependant on microstructure of Al2O3 matrix and on size and structure of dispersed ZrO2.

  • PDF

Ion Optical Study on the $He^{++}$ Beam Transport System of the SNU 1.5-MV Tandem Van do Graaff Accelerator (SNU 1.5-MV 직렬형 반데그라프 가속기의 $He^{++}$ 빔 소송계에 대한 이온광학적 고찰)

  • Hyen-Cheol JO;Young-Dug BAE;Hae-iLL BAK
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.426-437
    • /
    • 1991
  • The $He^{++}$ beam transport system of the SNU 1.5-MV Tandem Van de Graaff accelerator is analysed by ion optical approach. The program OPTRANS is developed to determine the optimum operating conditions of each ion optical component and to simulate ion beam transport. First order matrix formalism is used and the space charge effect is neglected. Optimum operating conditions for the transport of 0.5~3.0 MeV $He^{++}$ beam are determined by the use of the program OPTRANS. Initial ion beam omittance is assumed to be 0.5$\times$80.0 mm.mrad from the structure of the extraction electrode and the experiment of ion beam extraction. ion beam transport characteristics of each ion optical component according to the variation of the operating conditions are investigated, and operating conditions to minimize the beam size at each slit, stripping foil, and target are calculated. Optimum operating conditions obtained from the experiment of ion beam transport show a discrepancy of less than 15% compared with the calculated ones. From the simulation and experiment of ion beam trans-port, the validity of the calculated optimum operating conditions and the usefulness of the program OPTRANS are verified.

  • PDF

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

Magnetite Nanoparticles Containing Nanoporous Carbon for the Adsorption of Ibuprofen (마그네타이트 나노입자를 포함한 탄소나노세공체 합성과 아이부프로펜 흡착거동)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Preliminary studies on the synthesis of magnetic nanoparticles including nanoporous carbon materials have been done via a direct carbonization process from resol, ferric nitrate and triblock copolymer F127. The results show that the nanoporous magnetite/carbon ($Fe_3O_4$/carbon) with a low $Fe_3O_4$ content (1 wt%) possesses an ordered 2-D hexagonal (p6mm) structure, uniform nanopores (3.6 nm), high surface areas (up to 635 $m^2/g$) and pore volumes (up to 0.48 $cm^3/g$). Magnetite nanoparticles with a small particle size (10.2 nm) were confined in the matrix of amorphous carbon frameworks with superparamagnetic property (7.7 emu/g). The nanoporous magnetite/carbon showed maximum adsorption amount (995 mg/g) of ibuprofen after 24 h at room temperature. The nanoporous magnetite/carbon was separated from solution easily by using a magnet. The nanoporous magnetite/carbon material is a good adsorbent for hydrophobic organic drug molecules, i.e. ibuprofen.