• Title/Summary/Keyword: Matrix structure

Search Result 2,565, Processing Time 0.03 seconds

Nonlinear flexibility-based beam element on Winkler-Pasternak foundation

  • Sae-Long, Worathep;Limkatanyu, Suchart;Hansapinyo, Chayanon;Prachasaree, Woraphot;Rungamornrat, Jaroon;Kwon, Minho
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.371-388
    • /
    • 2021
  • A novel flexibility-based beam-foundation model for inelastic analyses of beams resting on foundation is presented in this paper. To model the deformability of supporting foundation media, the Winkler-Pasternak foundation model is adopted. Following the derivation of basic equations of the problem (strong form), the flexibility-based finite beam-foundation element (weak form) is formulated within the framework of the matrix virtual force principle. Through equilibrated force shape functions, the internal force fields are related to the element force degrees of freedom. Tonti's diagrams are adopted to present both strong and weak forms of the problem. Three numerical simulations are employed to assess validity and to show effectiveness of the proposed flexibility-based beam-foundation model. The first two simulations focus on elastic beam-foundation systems while the last simulation emphasizes on an inelastic beam-foundation system. The influences of the adopted foundation model to represent the underlying foundation medium are also discussed.

Reconstruction of a total defect of the lower eyelid with a temporoparietal fascial flap: a case report

  • Kim, Yun-Seob;Lee, Nae-Ho;Roh, Si-Gyun;Shin, Jin-Yong
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.1
    • /
    • pp.39-42
    • /
    • 2022
  • The reconstruction of total lower eyelid defects is challenging to plastic surgeons due to the complicated anatomical structure of the eyelid. In addition, in the setting of cancer excision, the resection is deep, which requires some volume augmentation. However, in some cases, free tissue transfer is not applicable. We report a case of using a temporoparietal fascia flap (TPFF) for reconstructing a total lower eyelid defect. A large erythematous mass in an 83-year-old woman was diagnosed as squamous cell carcinoma by biopsy. After wide excision, the defect size was about 8×6 cm. The lower eyelid structures including the tarsus were removed. The TPFF including the superficial temporal artery was elevated and inset to the defect area. After the flap inset, a split-thickness skin graft with an acellular dermal matrix was performed on the fascial flap. There were no wound problems such as infection, dehiscence, or necrosis. After the patient's discharge, partial skin graft loss and ectropion occurred. The complications resolved spontaneously during the postoperative period. We report a case of reconstructing a lower eyelid defect using a TPFF. A TPFF can be applied to patients with large defects for whom free tissue transfer surgery is not appropriate as in this case.

Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family

  • Korzhik, M.;Abashev, R.;Fedorov, A.;Dosovitskiy, G.;Gordienko, E.;Kamenskikh, I.;Kazlou, D.;Kuznecova, D.;Mechinsky, V.;Pustovarov, V.;Retivov, V.;Vasil'ev, A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2579-2585
    • /
    • 2022
  • Ceramics of quaternary garnets (Gd,Y)3Al2Ga3O12 doped with Ce, Tb have been fabricated and evaluated as prospective materials for indirect energy converters of α-and β-voltaic. Samples were characterized at excitation with an X-ray source and an intense 150 keV electron beam and showed good temperature stability of their emission and tolerance to irradiation. The role of X-rays accompanied the α-particle emitting in the increase of the conversion efficiency is clarified. The garnet-type structure of the matrix in the developed materials allows the production of quality crystalline mass with a light yield exceeding that of the commonly used YAG: Ce scintillator by a factor of two times.

Bayesian mixed models for longitudinal genetic data: theory, concepts, and simulation studies

  • Chung, Wonil;Cho, Youngkwang
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.8.1-8.14
    • /
    • 2022
  • Despite the success of recent genome-wide association studies investigating longitudinal traits, a large fraction of overall heritability remains unexplained. This suggests that some of the missing heritability may be accounted for by gene-gene and gene-time/environment interactions. In this paper, we develop a Bayesian variable selection method for longitudinal genetic data based on mixed models. The method jointly models the main effects and interactions of all candidate genetic variants and non-genetic factors and has higher statistical power than previous approaches. To account for the within-subject dependence structure, we propose a grid-based approach that models only one fixed-dimensional covariance matrix, which is thus applicable to data where subjects have different numbers of time points. We provide the theoretical basis of our Bayesian method and then illustrate its performance using data from the 1000 Genome Project with various simulation settings. Several simulation studies show that our multivariate method increases the statistical power compared to the corresponding univariate method and can detect gene-time/ environment interactions well. We further evaluate our method with different numbers of individuals, variants, and causal variants, as well as different trait-heritability, and conclude that our method performs reasonably well with various simulation settings.

Investigating the Iron-Making Process through the Scientific Analysis of By-products Obtained during Iron-Making from Songdu-ri Site in Jincheon, Korea

  • Jung, Da Yeon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.33-44
    • /
    • 2022
  • The study, iron-making process was examined through the scientific analysis of six by-products that were obtained during iron making at the Songdu-ri site in Jincheon. The total Fe content of the slags excavated from the Songdu-ri site was 36.29-54.61 wt%, whereas the deoxidation agent was 26.48-49.08 wt%. The compound analysis result indicated that fayalite and wüstite are the main compounds in slag. Furthermore, the microstructure analysis result confirmed the presence of fayalite and wüstite in the slag. It can be inferred from the flat shape in a bright matrix structure of the hammer scales that forging was performed in the latter stage. The Raman micro-spectroscopy results confirmed that the surface was hematite (Fe2O4), middle layer was magnetite (Fe3O4), and inner layer was wüstite (FeO). The presence of smelting and smithing slags, spheroid hammer scales, and flake hammer scales suggests that at the Songdu-ri site, iron-making process is carried out by division of labor into producing iron bloom through direct smelting, refining and forge welding, and ingot production.

Genetic Differences in Natural and Cultured River Pufferfish Populations by PCR Analysis

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.327-335
    • /
    • 2020
  • Genomic DNA (gDNA) extracted from two populations of natural and cultured river pufferfish (Takifugu obscurus) was amplified by polymerase chain reaction (PCR). The complexity of the fragments derived from the two locations varied dramatically. The genetic distances (GDs) between individuals numbered 15 and 12 in the cultured population was 0.053, which was the lowest acknowledged. The oligonucleotide primer OPC-11 identified 88 unique loci shared within each population reflecting the natural population. The OPC-05 primer identified 44 loci shared by the two populations. The average band-sharing (BS) values of individuals in the natural population (0.683±0.014) were lower than in those derived from the cultured population (0.759±0.009) (p<0.05). The shortest GD demonstrating a significant molecular difference was found between the cultured individuals # 15 and # 12 (GD=0.053). Individual # 02 of the natural population was most distantly related to cultured individual # 22 (GD=0.827). A cluster tree was built using the unweighted pair group method with arithmetic mean (UPGMA) Euclidean GD analysis based on a total of 578 various fragments derived from five primers in the two populations. Obvious markers identified in this study represent the genetic structure, species security, and proliferation of river pufferfish in the rivers of the Korean peninsula.

Similar and Dissimilar Welding Properties of Zirconium by TIG Welding (텅스텐아크용접에 의한 Zirconium의 동종 및 이종용접 특성 분석)

  • Kim, Jin Yeong;Hwang, Hyo-Woon;Lee, Dae Hyun;Lee, Jae Gwan;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.165-170
    • /
    • 2021
  • Zirconium has excellent mechanical strength and high heat resistance and excellent corrosion resistance, and it is very important to study zirconium's dissimilar welding properties since it can be used in various applications under harsh environments. Similar welding of pure zirconium and dissimilar metal welding of pure zirconium and pure titanium were performed by TIG welding, and the welding properties were studied in association with microstructural and mechanical properties. In the Zr/Zr welded specimen, sound FZ and HAZ regions showed a basketweave microstructure composed of plate α phase. FZ region of Zr/Ti dissimilar welded specimen exhibited a maximum hardness value of 354.8 Hv, which is about three times higher than that of Ti base metal, due to the precipitation of very fine metastable ω and α phases in the beta matrix. In addition, due to the microstructural continuity in the FZ and HAZ regions, excellent elongation property of 21% was exhibited.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

Grid-based Gaussian process models for longitudinal genetic data

  • Chung, Wonil
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.65-83
    • /
    • 2022
  • Although various statistical methods have been developed to map time-dependent genetic factors, most identified genetic variants can explain only a small portion of the estimated genetic variation in longitudinal traits. Gene-gene and gene-time/environment interactions are known to be important putative sources of the missing heritability. However, mapping epistatic gene-gene interactions is extremely difficult due to the very large parameter spaces for models containing such interactions. In this paper, we develop a Gaussian process (GP) based nonparametric Bayesian variable selection method for longitudinal data. It maps multiple genetic markers without restricting to pairwise interactions. Rather than modeling each main and interaction term explicitly, the GP model measures the importance of each marker, regardless of whether it is mostly due to a main effect or some interaction effect(s), via an unspecified function. To improve the flexibility of the GP model, we propose a novel grid-based method for the within-subject dependence structure. The proposed method can accurately approximate complex covariance structures. The dimension of the covariance matrix depends only on the number of fixed grid points although each subject may have different numbers of measurements at different time points. The deviance information criterion (DIC) and the Bayesian predictive information criterion (BPIC) are proposed for selecting an optimal number of grid points. To efficiently draw posterior samples, we combine a hybrid Monte Carlo method with a partially collapsed Gibbs (PCG) sampler. We apply the proposed GP model to a mouse dataset on age-related body weight.

On the Supplementary Study on DSM-Based Interface Requirements through Analysis of the Operation Scenario of the Urban Subway Logistics System

  • Hwang, Sunwoo;Kim, Joouk;Park, Jaemin;Lee, Sangmin;Kim, Youngmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.152-161
    • /
    • 2022
  • Recently, it is recognized as a high-cost and inefficient logistics system that increases traffic congestion and environmental problems due to an increase in traffic volume due to the activation of the online market. In order to solve inefficient problems such as unavoidable traffic congestion and environmental problems caused by the increase in traffic volume, it is necessary to develop a freight transport system technology using the existing urban railway infrastructure and freight-only urban railway. The urban subway logistics system is a logistics system that requires a combination of various technologies to solve the nationwide demand for urban logistics and road traffic problems. This paper recognized the existing traffic congestion and environmental pollution of road traffic as problems, and supplemented the contact point requirements presented above by identifying the sub-systems constituting the target system and supplementary points for each part-level contact point. In this study, as a complex system operated for one purpose by grafting various technologies, a plan is required to secure the reliability and safety of operation from various viewpoints. The results of this study can contribute to the initial configuration and basic data to solve the interface bottleneck of the urban subway logistics system to be promoted in the future.