DOI QR코드

DOI QR Code

Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family

  • Korzhik, M. (Institute for Nuclear Problems of Belarus State University) ;
  • Abashev, R. (Ural Federal University) ;
  • Fedorov, A. (Institute for Nuclear Problems of Belarus State University) ;
  • Dosovitskiy, G. (National Research Center "Kurchatov Institute") ;
  • Gordienko, E. (National Research Center "Kurchatov Institute") ;
  • Kamenskikh, I. (Physical Department of Moscow State University) ;
  • Kazlou, D. (Institute for Nuclear Problems of Belarus State University) ;
  • Kuznecova, D. (National Research Center "Kurchatov Institute") ;
  • Mechinsky, V. (Institute for Nuclear Problems of Belarus State University) ;
  • Pustovarov, V. (Ural Federal University) ;
  • Retivov, V. (National Research Center "Kurchatov Institute") ;
  • Vasil'ev, A. (Skobelchin Institute for Nuclear Physiocs of Moscow State University)
  • Received : 2021.10.31
  • Accepted : 2022.02.07
  • Published : 2022.07.25

Abstract

Ceramics of quaternary garnets (Gd,Y)3Al2Ga3O12 doped with Ce, Tb have been fabricated and evaluated as prospective materials for indirect energy converters of α-and β-voltaic. Samples were characterized at excitation with an X-ray source and an intense 150 keV electron beam and showed good temperature stability of their emission and tolerance to irradiation. The role of X-rays accompanied the α-particle emitting in the increase of the conversion efficiency is clarified. The garnet-type structure of the matrix in the developed materials allows the production of quality crystalline mass with a light yield exceeding that of the commonly used YAG: Ce scintillator by a factor of two times.

Keywords

Acknowledgement

Authors with affiliations b, d, e and f acknowledge support from Russian Ministry of Science and Education grant No. 075-15-2021-1353. The scientific equipment provided by shared research facilities "Scientific Research Analytical Center of National Research Center "Kurchatov Institute" - IREA" was used, with financial support of Russian Federation, represented by the Ministry of Science and Higher Education, agreement No. 075-11-2021-070 dated August 19, 2021. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project No. FEUZ-2020-0060) (authors with affiliation "c").

References

  1. K.E. Bower, Y.A. Barbanel, Y.G. Shreter, G.W. Bohnert, Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries, CRC Press LLC, Boca Raton, 2002.
  2. M.A. Prelas, et al., A review of nuclear batteries, Prog. Nucl. Energy 75 (2014) 117-148. https://doi.org/10.1016/j.pnucene.2014.04.007
  3. M.G. Speser, T. Alam, High power direct energy conversion by nuclear batteries, Appl. Phys. Rev. 6 (2019), 0301305.
  4. C. Leroy, P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection, fourth ed., World Scientific, New Jersey, 2016.
  5. J. Grant, et al., Wide bandgap semiconductor detectors for harsh radiation environments, J.Nucl. Instrum. Methods Phys. Res., Sect. A 546 (2005) 213-217. https://doi.org/10.1016/j.nima.2005.03.038
  6. J.T. Wacharasindhu, J.W. Kwon, D.E. Meier, J.D. Robertson, Radioisotope microbattery based on liquid semiconductor, Appl. Phys. Lett. 95 (2009), 014103. https://doi.org/10.1063/1.3160542
  7. S.I. Maximenko, J.E. Moore, C.A. Affouda, P.P. Jenkins, Optimal semiconductors for 3H and 63Ni betavoltaics, Sci. Rep. 9 (2019) 10892. https://doi.org/10.1038/s41598-019-47371-6
  8. M. Eiting, C. J, V. Krishnamoorthy, S. Rodgers, T. George, Demonstration of a radiation resistant, high efficiency SiC betavoltaic, Appl. Phys. Lett. 88 (2006), 064101. https://doi.org/10.1063/1.2172411
  9. Z. Cheng, X. Chen, H. San, Z. Feng, B. Liu, A high open-circuit voltage gallium nitride betavoltaic microbattery, J. Micromech. Microeng. 22 (2012), 074011. https://doi.org/10.1088/0960-1317/22/7/074011
  10. X.-Y. Li, Y. Ren, X.-J. Chen, D.-Y. Qiao, W.-Z. Yuan, 63Ni Schottky barrier nuclear battery of 4H-SiC, J. Radioanal. Nucl. Chem. 287 (2011) 173-176. https://doi.org/10.1007/s10967-010-0746-7
  11. H. Wang, X.-B. Tang, Y.-P. Liu, Z.-H. Xu, M. Liu, D. Chen, Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B 359 (2015) 36-43. https://doi.org/10.1016/j.nimb.2015.07.046
  12. J. Lanley, M. Litz, J. Russo, W. Ray Jr., Design of Alpha-Voltaic Power Source Using Americium-241(241Am) and Diamond with a Power Density of 10mW/cm3, US Army Research laboratory, October 2017. ARL-TR-8189.
  13. K. Ohno, T. Abe, Bright green phosphor, Y3Al5-xGaxO12:Tb, for projection CRT, J. Electrochem. Soc. 134 (1987) 2072. https://doi.org/10.1149/1.2100822
  14. D.J. Robbins, et al., The relationship between concentration and efficiency in rare-earth activated phosphors, J. Electrochem. Soc. 126 (1979) 1556. https://doi.org/10.1149/1.2129329
  15. G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, 1994.
  16. A. Yamamoto, H, T. Kano, Enhancement of cathodoluminescence efficiency of rare- earth activated Y2O2S by Tb3+ or Pr3+, J. Electrochem. Soc. 126 (1979) 305. https://doi.org/10.1149/1.2129027
  17. D.B.M. Klaassen, H. Mulder, C.R. Ronda, Excitation mechanism of cathodoluminescence of oxisulfides, Phys. Rev. B 39 (1989) 42. https://doi.org/10.1103/physrevb.39.42
  18. Z. Zhang, et al., Application of liquid scintillators as energy conversion materials in nuclear batteries, Sensor. Actuator. A290 (2019) 162-171. https://doi.org/10.1016/j.sna.2019.03.024
  19. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, second ed., Springer International Publishing, 2017.
  20. The CERN Large Hadron Collider: Accelerator and Experiments, CERN Document Server, 2009 (accessed June 5, 2021), https://cds.cern.ch/record/1244506.
  21. M. Korjik, E. Auffray, Limits of inorganic scintillating materials to operate in a high dose rate environment at future collider experiments, IEEE Trans. Nucl. Sci. 63 (2016) 552-563. https://doi.org/10.1109/TNS.2016.2527701
  22. V. Dormenev, A. Fedorov, M. Glaser, M. Kobayashi, M. Korjik, F. Maas, V. Mechinski, R. Rusack, A. Singovski, R. Zoueyski, Radiation damage of heavy crystalline detector materials by 24 GeV protons, Nucl. Instrum. Methods Phys. Res., Sect. A 701 (2013) 231-234. https://doi.org/10.1016/j.nima.2012.10.073
  23. E. Auffray, A. Barysevich, A. Fedorov, M. Korjik, M. Koschan, M. Lucchini, V. Mechinski, C.L. Melcher, A. Voitovich, Radiation damage of LSO crystals under γ-and 24GeV protons irradiation, Nucl. Instrum. Methods Phys. Res., Sect. A 721 (2013) 76-82. https://doi.org/10.1016/j.nima.2013.04.065
  24. E. Auffray, A. Fedorov, M. Korjik, M. Lucchini, V. Mechinski, N. Naumenko, A. Voitovich, Radiation damage of oxy-orthosilicate scintillation crystals under gamma and high energy proton irradiation, IEEE Trans. Nucl. Sci. 61 (2017) 495-500. https://doi.org/10.1109/TNS.2013.2285249
  25. R.Y. Zhu, Handbook of Particle Detection and Imaging, Springer, Berlin, 2021, pp. 535-555.
  26. E. Auffray, A. Fedorov, V. Dormenev, J. Houzvicka, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Ochesanu, Optical transmission damage of undoped and Ce doped Y3Al5O12 scintillation crystals under 24 GeV protons high fluence, Nucl. Instrum. Methods Phys. Res., Sect. A 856 (2017) 7-10. https://doi.org/10.1016/j.nima.2016.09.037
  27. O. Sidletskiy, I. Gerasymov, D. Kurtsev, et al., Engineering of bulk and fibershaped YAGG: Ce scintillator crystals, CrystEngComm 19 (2017) 1001-1007. https://doi.org/10.1039/C6CE02330D
  28. V. Alenkov, O. Buzanov, G. Dosovitskiy, et al., Irradiation studies of a multidoped Gd3Al2Ga3O12 scintillator, Nucl. Instrum. Methods Phys. Res., Sect. A 916 (2019) 226-229. https://doi.org/10.1016/j.nima.2018.11.101
  29. E. Auffray, G. Dosovitskiy, A. Fedorov, I. Guz, M. Korjik, N. Kratochwill, M. Lucchini, S. Nargelas, D. Kozlov, V. Mechinsky, P. Orsich, O. Sidletskiy, G. Tamulaitis, A. Vaitkevicius, Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments, Radiat. Phys. Chem. 164 (2019) 108365. https://doi.org/10.1016/j.radphyschem.2019.108365
  30. C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A.N. Vasil'ev, A. Yoshikawa, R.Y. Zhu, Needs, trends, and advances in inorganic scintillators, IEEE Trans. Nucl. Sci. 65 (2018) 1977, 1997.
  31. M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection, Adv. Opt. Mater. 3 (2015) 463-481. https://doi.org/10.1002/adom.201400571
  32. N. Cherepy, S.A. Payne, Z. Seeley, P.C. Cohen, M.S. Andreaco, M.J. Schmand, Transparent Ceramic Garnet Scintillator Detector for Positron Emission Tomography, US Pat, 2018, p. 10000698.
  33. G.A. Dosovitskiy, P.V. Karpyuk, P.V. Evpokimov, D.E. Kuznetsova, V.A. Mechinsky, A.E. Borisevich, A.A. Fedorov, V.I. Putlyaev, A.E. Dosovitskiy, M.V. Korjik, First 3d-printed complex inorganic polycrystalline scintillator, CrystEngComm 19 (2017) 4260-4264. https://doi.org/10.1039/C7CE00541E
  34. M. Korzhik, V. Alenkov, O. Buzanov, G. Dosovitskiy, A. Fedorov, D. Kozlov, V. Mechinsky, S. Nargelas, G. Tamulaitis, A. Vaitkevi cius, Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5-Y0.5)3Al2Ga3O12:Ce,Mg, CrystEngComm 22 (2020) 2502-2506. https://doi.org/10.1039/d0ce00105h
  35. M. Korzhik, A. Borisevich, A. Fedorov, E. Gordienko, P. Karpyuk, V. Dubov, P. Sokolov, A. Mikhlin, G. Dosovitskiy, V. Mechninsky, D. Kozlov, V. Uglov, The scintillation mechanisms in Ce and Tb doped (GdxY1-x)Al2Ga3O12 quaternary garnet structure crystalline ceramics, J. Lumin. 234 (2021) 117933. https://doi.org/10.1016/j.jlumin.2021.117933
  36. D.J. Robbins, On predicting the maximum efficiency of phosphor systems excited by ionizing radiation, J. Electrochem. Soc. 127 (1980) 2694-2702. https://doi.org/10.1149/1.2129574
  37. M.T. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals, Nucl. Instrum. Methods Phys. Res. 816 (2016) 176-183. https://doi.org/10.1016/j.nima.2016.02.004
  38. A. Potdevin, G. Chadeyron, D. Boyer, R. Mahiou, Optical properties upon vacuum ultraviolet excitation of sol-gel based Y3Al5O12:Tb3+, Ce3+ powders, J. Appl. Phys. 102 (2007), 073536, 073543.
  39. D.M. de Leeuw, G.W. 't Hooft, Method for the analysis of saturation effects of cathodoluminescence in phosphors:applied to Zn2SiO4:Mg and Y3Al3O12:Tb, J. Lumin. 28 (1983) 275-300. https://doi.org/10.1016/0022-2313(83)90036-4
  40. E.F. Gibbons, R.G. De Losh, T.Y. Tien, H.L. Stadler, A technique for measuring the saturation of phosphors at high current densities, J. Electrochem. Soc. 120 (1973) 1730-1734. https://doi.org/10.1149/1.2403354
  41. J.F. Geisz, M.A. Steiner, N. Jain, et al., Building a six-junction inverted metamorphic concentrator solar cell, IEEE J. Photovolt. 8 (2018) 626-632. https://doi.org/10.1109/jphotov.2017.2778567
  42. E.I. Gorokhova, V.A. Demidenko, S.B. Mikhrin, P.A. Rodnyi, C.W.E. van Eijk, Luminescence and scintillation properties of Gd2O2/S:Tb,Ce ceramics, 2004, IEEE Symp. Conf. Nuc. Sci. 2 (2004) 813-816.
  43. T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. Ito, Evaluation of properties of YAG (Ce) ceramic scintillators, IEEE Trans. Nucl. Sci. 52 (2005) 1836-1941. https://doi.org/10.1109/TNS.2005.856757
  44. W.W. Wolszczak, P. Dorenbos, Non-proportional response of scintillators to alpha particle excitation, IEEE Trans. Nucl. Sci. (2017) 1, https://doi.org/10.1109/tns.2017.2699327, 1. doi:.