Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family |
Korzhik, M.
(Institute for Nuclear Problems of Belarus State University)
Abashev, R. (Ural Federal University) Fedorov, A. (Institute for Nuclear Problems of Belarus State University) Dosovitskiy, G. (National Research Center "Kurchatov Institute") Gordienko, E. (National Research Center "Kurchatov Institute") Kamenskikh, I. (Physical Department of Moscow State University) Kazlou, D. (Institute for Nuclear Problems of Belarus State University) Kuznecova, D. (National Research Center "Kurchatov Institute") Mechinsky, V. (Institute for Nuclear Problems of Belarus State University) Pustovarov, V. (Ural Federal University) Retivov, V. (National Research Center "Kurchatov Institute") Vasil'ev, A. (Skobelchin Institute for Nuclear Physiocs of Moscow State University) |
1 | N. Cherepy, S.A. Payne, Z. Seeley, P.C. Cohen, M.S. Andreaco, M.J. Schmand, Transparent Ceramic Garnet Scintillator Detector for Positron Emission Tomography, US Pat, 2018, p. 10000698. |
2 | Z. Zhang, et al., Application of liquid scintillators as energy conversion materials in nuclear batteries, Sensor. Actuator. A290 (2019) 162-171. DOI |
3 | G.A. Dosovitskiy, P.V. Karpyuk, P.V. Evpokimov, D.E. Kuznetsova, V.A. Mechinsky, A.E. Borisevich, A.A. Fedorov, V.I. Putlyaev, A.E. Dosovitskiy, M.V. Korjik, First 3d-printed complex inorganic polycrystalline scintillator, CrystEngComm 19 (2017) 4260-4264. DOI |
4 | M. Korzhik, V. Alenkov, O. Buzanov, G. Dosovitskiy, A. Fedorov, D. Kozlov, V. Mechinsky, S. Nargelas, G. Tamulaitis, A. Vaitkevi cius, Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5-Y0.5)3Al2Ga3O12:Ce,Mg, CrystEngComm 22 (2020) 2502-2506. DOI |
5 | D.J. Robbins, On predicting the maximum efficiency of phosphor systems excited by ionizing radiation, J. Electrochem. Soc. 127 (1980) 2694-2702. DOI |
6 | M.T. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals, Nucl. Instrum. Methods Phys. Res. 816 (2016) 176-183. DOI |
7 | D.M. de Leeuw, G.W. 't Hooft, Method for the analysis of saturation effects of cathodoluminescence in phosphors:applied to Zn2SiO4:Mg and Y3Al3O12:Tb, J. Lumin. 28 (1983) 275-300. DOI |
8 | E.I. Gorokhova, V.A. Demidenko, S.B. Mikhrin, P.A. Rodnyi, C.W.E. van Eijk, Luminescence and scintillation properties of Gd2O2/S:Tb,Ce ceramics, 2004, IEEE Symp. Conf. Nuc. Sci. 2 (2004) 813-816. |
9 | S.I. Maximenko, J.E. Moore, C.A. Affouda, P.P. Jenkins, Optimal semiconductors for 3H and 63Ni betavoltaics, Sci. Rep. 9 (2019) 10892. DOI |
10 | Z. Cheng, X. Chen, H. San, Z. Feng, B. Liu, A high open-circuit voltage gallium nitride betavoltaic microbattery, J. Micromech. Microeng. 22 (2012), 074011. DOI |
11 | W.W. Wolszczak, P. Dorenbos, Non-proportional response of scintillators to alpha particle excitation, IEEE Trans. Nucl. Sci. (2017) 1, https://doi.org/10.1109/tns.2017.2699327, 1. doi:. DOI |
12 | X.-Y. Li, Y. Ren, X.-J. Chen, D.-Y. Qiao, W.-Z. Yuan, 63Ni Schottky barrier nuclear battery of 4H-SiC, J. Radioanal. Nucl. Chem. 287 (2011) 173-176. DOI |
13 | J. Lanley, M. Litz, J. Russo, W. Ray Jr., Design of Alpha-Voltaic Power Source Using Americium-241(241Am) and Diamond with a Power Density of 10mW/cm3, US Army Research laboratory, October 2017. ARL-TR-8189. |
14 | K. Ohno, T. Abe, Bright green phosphor, Y3Al5-xGaxO12:Tb, for projection CRT, J. Electrochem. Soc. 134 (1987) 2072. DOI |
15 | D.J. Robbins, et al., The relationship between concentration and efficiency in rare-earth activated phosphors, J. Electrochem. Soc. 126 (1979) 1556. DOI |
16 | G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, 1994. |
17 | A. Yamamoto, H, T. Kano, Enhancement of cathodoluminescence efficiency of rare- earth activated Y2O2S by Tb3+ or Pr3+, J. Electrochem. Soc. 126 (1979) 305. DOI |
18 | D.B.M. Klaassen, H. Mulder, C.R. Ronda, Excitation mechanism of cathodoluminescence of oxisulfides, Phys. Rev. B 39 (1989) 42. DOI |
19 | P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, second ed., Springer International Publishing, 2017. |
20 | J.T. Wacharasindhu, J.W. Kwon, D.E. Meier, J.D. Robertson, Radioisotope microbattery based on liquid semiconductor, Appl. Phys. Lett. 95 (2009), 014103. DOI |
21 | The CERN Large Hadron Collider: Accelerator and Experiments, CERN Document Server, 2009 (accessed June 5, 2021), https://cds.cern.ch/record/1244506. |
22 | R.Y. Zhu, Handbook of Particle Detection and Imaging, Springer, Berlin, 2021, pp. 535-555. |
23 | E. Auffray, A. Fedorov, V. Dormenev, J. Houzvicka, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Ochesanu, Optical transmission damage of undoped and Ce doped Y3Al5O12 scintillation crystals under 24 GeV protons high fluence, Nucl. Instrum. Methods Phys. Res., Sect. A 856 (2017) 7-10. DOI |
24 | M. Korjik, E. Auffray, Limits of inorganic scintillating materials to operate in a high dose rate environment at future collider experiments, IEEE Trans. Nucl. Sci. 63 (2016) 552-563. DOI |
25 | V. Dormenev, A. Fedorov, M. Glaser, M. Kobayashi, M. Korjik, F. Maas, V. Mechinski, R. Rusack, A. Singovski, R. Zoueyski, Radiation damage of heavy crystalline detector materials by 24 GeV protons, Nucl. Instrum. Methods Phys. Res., Sect. A 701 (2013) 231-234. DOI |
26 | E. Auffray, A. Barysevich, A. Fedorov, M. Korjik, M. Koschan, M. Lucchini, V. Mechinski, C.L. Melcher, A. Voitovich, Radiation damage of LSO crystals under γ-and 24GeV protons irradiation, Nucl. Instrum. Methods Phys. Res., Sect. A 721 (2013) 76-82. DOI |
27 | E. Auffray, A. Fedorov, M. Korjik, M. Lucchini, V. Mechinski, N. Naumenko, A. Voitovich, Radiation damage of oxy-orthosilicate scintillation crystals under gamma and high energy proton irradiation, IEEE Trans. Nucl. Sci. 61 (2017) 495-500. DOI |
28 | E. Auffray, G. Dosovitskiy, A. Fedorov, I. Guz, M. Korjik, N. Kratochwill, M. Lucchini, S. Nargelas, D. Kozlov, V. Mechinsky, P. Orsich, O. Sidletskiy, G. Tamulaitis, A. Vaitkevicius, Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments, Radiat. Phys. Chem. 164 (2019) 108365. DOI |
29 | O. Sidletskiy, I. Gerasymov, D. Kurtsev, et al., Engineering of bulk and fibershaped YAGG: Ce scintillator crystals, CrystEngComm 19 (2017) 1001-1007. DOI |
30 | V. Alenkov, O. Buzanov, G. Dosovitskiy, et al., Irradiation studies of a multidoped Gd3Al2Ga3O12 scintillator, Nucl. Instrum. Methods Phys. Res., Sect. A 916 (2019) 226-229. DOI |
31 | M.A. Prelas, et al., A review of nuclear batteries, Prog. Nucl. Energy 75 (2014) 117-148. DOI |
32 | M.G. Speser, T. Alam, High power direct energy conversion by nuclear batteries, Appl. Phys. Rev. 6 (2019), 0301305. |
33 | C. Leroy, P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection, fourth ed., World Scientific, New Jersey, 2016. |
34 | J. Grant, et al., Wide bandgap semiconductor detectors for harsh radiation environments, J.Nucl. Instrum. Methods Phys. Res., Sect. A 546 (2005) 213-217. DOI |
35 | J.F. Geisz, M.A. Steiner, N. Jain, et al., Building a six-junction inverted metamorphic concentrator solar cell, IEEE J. Photovolt. 8 (2018) 626-632. DOI |
36 | E.F. Gibbons, R.G. De Losh, T.Y. Tien, H.L. Stadler, A technique for measuring the saturation of phosphors at high current densities, J. Electrochem. Soc. 120 (1973) 1730-1734. DOI |
37 | M. Eiting, C. J, V. Krishnamoorthy, S. Rodgers, T. George, Demonstration of a radiation resistant, high efficiency SiC betavoltaic, Appl. Phys. Lett. 88 (2006), 064101. DOI |
38 | H. Wang, X.-B. Tang, Y.-P. Liu, Z.-H. Xu, M. Liu, D. Chen, Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B 359 (2015) 36-43. DOI |
39 | K.E. Bower, Y.A. Barbanel, Y.G. Shreter, G.W. Bohnert, Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries, CRC Press LLC, Boca Raton, 2002. |
40 | A. Potdevin, G. Chadeyron, D. Boyer, R. Mahiou, Optical properties upon vacuum ultraviolet excitation of sol-gel based Y3Al5O12:Tb3+, Ce3+ powders, J. Appl. Phys. 102 (2007), 073536, 073543. |
41 | C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A.N. Vasil'ev, A. Yoshikawa, R.Y. Zhu, Needs, trends, and advances in inorganic scintillators, IEEE Trans. Nucl. Sci. 65 (2018) 1977, 1997. |
42 | M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection, Adv. Opt. Mater. 3 (2015) 463-481. DOI |
43 | T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. Ito, Evaluation of properties of YAG (Ce) ceramic scintillators, IEEE Trans. Nucl. Sci. 52 (2005) 1836-1941. DOI |
44 | M. Korzhik, A. Borisevich, A. Fedorov, E. Gordienko, P. Karpyuk, V. Dubov, P. Sokolov, A. Mikhlin, G. Dosovitskiy, V. Mechninsky, D. Kozlov, V. Uglov, The scintillation mechanisms in Ce and Tb doped (GdxY1-x)Al2Ga3O12 quaternary garnet structure crystalline ceramics, J. Lumin. 234 (2021) 117933. DOI |