Browse > Article
http://dx.doi.org/10.1016/j.net.2022.02.007

Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family  

Korzhik, M. (Institute for Nuclear Problems of Belarus State University)
Abashev, R. (Ural Federal University)
Fedorov, A. (Institute for Nuclear Problems of Belarus State University)
Dosovitskiy, G. (National Research Center "Kurchatov Institute")
Gordienko, E. (National Research Center "Kurchatov Institute")
Kamenskikh, I. (Physical Department of Moscow State University)
Kazlou, D. (Institute for Nuclear Problems of Belarus State University)
Kuznecova, D. (National Research Center "Kurchatov Institute")
Mechinsky, V. (Institute for Nuclear Problems of Belarus State University)
Pustovarov, V. (Ural Federal University)
Retivov, V. (National Research Center "Kurchatov Institute")
Vasil'ev, A. (Skobelchin Institute for Nuclear Physiocs of Moscow State University)
Publication Information
Nuclear Engineering and Technology / v.54, no.7, 2022 , pp. 2579-2585 More about this Journal
Abstract
Ceramics of quaternary garnets (Gd,Y)3Al2Ga3O12 doped with Ce, Tb have been fabricated and evaluated as prospective materials for indirect energy converters of α-and β-voltaic. Samples were characterized at excitation with an X-ray source and an intense 150 keV electron beam and showed good temperature stability of their emission and tolerance to irradiation. The role of X-rays accompanied the α-particle emitting in the increase of the conversion efficiency is clarified. The garnet-type structure of the matrix in the developed materials allows the production of quality crystalline mass with a light yield exceeding that of the commonly used YAG: Ce scintillator by a factor of two times.
Keywords
Indirect converter; Beta-voltaics; Alpha-voltaics; Quaternary garnet; Terbium; Cerium; Radiation hardness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. Cherepy, S.A. Payne, Z. Seeley, P.C. Cohen, M.S. Andreaco, M.J. Schmand, Transparent Ceramic Garnet Scintillator Detector for Positron Emission Tomography, US Pat, 2018, p. 10000698.
2 Z. Zhang, et al., Application of liquid scintillators as energy conversion materials in nuclear batteries, Sensor. Actuator. A290 (2019) 162-171.   DOI
3 G.A. Dosovitskiy, P.V. Karpyuk, P.V. Evpokimov, D.E. Kuznetsova, V.A. Mechinsky, A.E. Borisevich, A.A. Fedorov, V.I. Putlyaev, A.E. Dosovitskiy, M.V. Korjik, First 3d-printed complex inorganic polycrystalline scintillator, CrystEngComm 19 (2017) 4260-4264.   DOI
4 M. Korzhik, V. Alenkov, O. Buzanov, G. Dosovitskiy, A. Fedorov, D. Kozlov, V. Mechinsky, S. Nargelas, G. Tamulaitis, A. Vaitkevi cius, Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5-Y0.5)3Al2Ga3O12:Ce,Mg, CrystEngComm 22 (2020) 2502-2506.   DOI
5 D.J. Robbins, On predicting the maximum efficiency of phosphor systems excited by ionizing radiation, J. Electrochem. Soc. 127 (1980) 2694-2702.   DOI
6 M.T. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals, Nucl. Instrum. Methods Phys. Res. 816 (2016) 176-183.   DOI
7 D.M. de Leeuw, G.W. 't Hooft, Method for the analysis of saturation effects of cathodoluminescence in phosphors:applied to Zn2SiO4:Mg and Y3Al3O12:Tb, J. Lumin. 28 (1983) 275-300.   DOI
8 E.I. Gorokhova, V.A. Demidenko, S.B. Mikhrin, P.A. Rodnyi, C.W.E. van Eijk, Luminescence and scintillation properties of Gd2O2/S:Tb,Ce ceramics, 2004, IEEE Symp. Conf. Nuc. Sci. 2 (2004) 813-816.
9 S.I. Maximenko, J.E. Moore, C.A. Affouda, P.P. Jenkins, Optimal semiconductors for 3H and 63Ni betavoltaics, Sci. Rep. 9 (2019) 10892.   DOI
10 Z. Cheng, X. Chen, H. San, Z. Feng, B. Liu, A high open-circuit voltage gallium nitride betavoltaic microbattery, J. Micromech. Microeng. 22 (2012), 074011.   DOI
11 W.W. Wolszczak, P. Dorenbos, Non-proportional response of scintillators to alpha particle excitation, IEEE Trans. Nucl. Sci. (2017) 1, https://doi.org/10.1109/tns.2017.2699327, 1. doi:.   DOI
12 X.-Y. Li, Y. Ren, X.-J. Chen, D.-Y. Qiao, W.-Z. Yuan, 63Ni Schottky barrier nuclear battery of 4H-SiC, J. Radioanal. Nucl. Chem. 287 (2011) 173-176.   DOI
13 J. Lanley, M. Litz, J. Russo, W. Ray Jr., Design of Alpha-Voltaic Power Source Using Americium-241(241Am) and Diamond with a Power Density of 10mW/cm3, US Army Research laboratory, October 2017. ARL-TR-8189.
14 K. Ohno, T. Abe, Bright green phosphor, Y3Al5-xGaxO12:Tb, for projection CRT, J. Electrochem. Soc. 134 (1987) 2072.   DOI
15 D.J. Robbins, et al., The relationship between concentration and efficiency in rare-earth activated phosphors, J. Electrochem. Soc. 126 (1979) 1556.   DOI
16 G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, 1994.
17 A. Yamamoto, H, T. Kano, Enhancement of cathodoluminescence efficiency of rare- earth activated Y2O2S by Tb3+ or Pr3+, J. Electrochem. Soc. 126 (1979) 305.   DOI
18 D.B.M. Klaassen, H. Mulder, C.R. Ronda, Excitation mechanism of cathodoluminescence of oxisulfides, Phys. Rev. B 39 (1989) 42.   DOI
19 P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, second ed., Springer International Publishing, 2017.
20 J.T. Wacharasindhu, J.W. Kwon, D.E. Meier, J.D. Robertson, Radioisotope microbattery based on liquid semiconductor, Appl. Phys. Lett. 95 (2009), 014103.   DOI
21 The CERN Large Hadron Collider: Accelerator and Experiments, CERN Document Server, 2009 (accessed June 5, 2021), https://cds.cern.ch/record/1244506.
22 R.Y. Zhu, Handbook of Particle Detection and Imaging, Springer, Berlin, 2021, pp. 535-555.
23 E. Auffray, A. Fedorov, V. Dormenev, J. Houzvicka, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Ochesanu, Optical transmission damage of undoped and Ce doped Y3Al5O12 scintillation crystals under 24 GeV protons high fluence, Nucl. Instrum. Methods Phys. Res., Sect. A 856 (2017) 7-10.   DOI
24 M. Korjik, E. Auffray, Limits of inorganic scintillating materials to operate in a high dose rate environment at future collider experiments, IEEE Trans. Nucl. Sci. 63 (2016) 552-563.   DOI
25 V. Dormenev, A. Fedorov, M. Glaser, M. Kobayashi, M. Korjik, F. Maas, V. Mechinski, R. Rusack, A. Singovski, R. Zoueyski, Radiation damage of heavy crystalline detector materials by 24 GeV protons, Nucl. Instrum. Methods Phys. Res., Sect. A 701 (2013) 231-234.   DOI
26 E. Auffray, A. Barysevich, A. Fedorov, M. Korjik, M. Koschan, M. Lucchini, V. Mechinski, C.L. Melcher, A. Voitovich, Radiation damage of LSO crystals under γ-and 24GeV protons irradiation, Nucl. Instrum. Methods Phys. Res., Sect. A 721 (2013) 76-82.   DOI
27 E. Auffray, A. Fedorov, M. Korjik, M. Lucchini, V. Mechinski, N. Naumenko, A. Voitovich, Radiation damage of oxy-orthosilicate scintillation crystals under gamma and high energy proton irradiation, IEEE Trans. Nucl. Sci. 61 (2017) 495-500.   DOI
28 E. Auffray, G. Dosovitskiy, A. Fedorov, I. Guz, M. Korjik, N. Kratochwill, M. Lucchini, S. Nargelas, D. Kozlov, V. Mechinsky, P. Orsich, O. Sidletskiy, G. Tamulaitis, A. Vaitkevicius, Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments, Radiat. Phys. Chem. 164 (2019) 108365.   DOI
29 O. Sidletskiy, I. Gerasymov, D. Kurtsev, et al., Engineering of bulk and fibershaped YAGG: Ce scintillator crystals, CrystEngComm 19 (2017) 1001-1007.   DOI
30 V. Alenkov, O. Buzanov, G. Dosovitskiy, et al., Irradiation studies of a multidoped Gd3Al2Ga3O12 scintillator, Nucl. Instrum. Methods Phys. Res., Sect. A 916 (2019) 226-229.   DOI
31 M.A. Prelas, et al., A review of nuclear batteries, Prog. Nucl. Energy 75 (2014) 117-148.   DOI
32 M.G. Speser, T. Alam, High power direct energy conversion by nuclear batteries, Appl. Phys. Rev. 6 (2019), 0301305.
33 C. Leroy, P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection, fourth ed., World Scientific, New Jersey, 2016.
34 J. Grant, et al., Wide bandgap semiconductor detectors for harsh radiation environments, J.Nucl. Instrum. Methods Phys. Res., Sect. A 546 (2005) 213-217.   DOI
35 J.F. Geisz, M.A. Steiner, N. Jain, et al., Building a six-junction inverted metamorphic concentrator solar cell, IEEE J. Photovolt. 8 (2018) 626-632.   DOI
36 E.F. Gibbons, R.G. De Losh, T.Y. Tien, H.L. Stadler, A technique for measuring the saturation of phosphors at high current densities, J. Electrochem. Soc. 120 (1973) 1730-1734.   DOI
37 M. Eiting, C. J, V. Krishnamoorthy, S. Rodgers, T. George, Demonstration of a radiation resistant, high efficiency SiC betavoltaic, Appl. Phys. Lett. 88 (2006), 064101.   DOI
38 H. Wang, X.-B. Tang, Y.-P. Liu, Z.-H. Xu, M. Liu, D. Chen, Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B 359 (2015) 36-43.   DOI
39 K.E. Bower, Y.A. Barbanel, Y.G. Shreter, G.W. Bohnert, Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries, CRC Press LLC, Boca Raton, 2002.
40 A. Potdevin, G. Chadeyron, D. Boyer, R. Mahiou, Optical properties upon vacuum ultraviolet excitation of sol-gel based Y3Al5O12:Tb3+, Ce3+ powders, J. Appl. Phys. 102 (2007), 073536, 073543.
41 C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A.N. Vasil'ev, A. Yoshikawa, R.Y. Zhu, Needs, trends, and advances in inorganic scintillators, IEEE Trans. Nucl. Sci. 65 (2018) 1977, 1997.
42 M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection, Adv. Opt. Mater. 3 (2015) 463-481.   DOI
43 T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. Ito, Evaluation of properties of YAG (Ce) ceramic scintillators, IEEE Trans. Nucl. Sci. 52 (2005) 1836-1941.   DOI
44 M. Korzhik, A. Borisevich, A. Fedorov, E. Gordienko, P. Karpyuk, V. Dubov, P. Sokolov, A. Mikhlin, G. Dosovitskiy, V. Mechninsky, D. Kozlov, V. Uglov, The scintillation mechanisms in Ce and Tb doped (GdxY1-x)Al2Ga3O12 quaternary garnet structure crystalline ceramics, J. Lumin. 234 (2021) 117933.   DOI