• Title/Summary/Keyword: Matrix functions

Search Result 738, Processing Time 0.019 seconds

An Orthogonal Representation of Estimable Functions

  • Yi, Seong-Baek
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.837-842
    • /
    • 2008
  • Students taking linear model courses have difficulty in determining which parametric functions are estimable when the design matrix of a linear model is rank deficient. In this note a special form of estimable functions is presented with a linear combination of some orthogonal estimable functions. Here, the orthogonality means the least squares estimators of the estimable functions are uncorrelated and have the same variance. The number of the orthogonal estimable functions composing the special form is equal to the rank of the design matrix. The orthogonal estimable functions can be easily obtained through the singular value decomposition of the design matrix.

GENERALIZATION OF LAGUERRE MATRIX POLYNOMIALS FOR TWO VARIABLES

  • Ali, Asad;Iqbal, Muhammad Zafar
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.141-151
    • /
    • 2021
  • The main object of the present paper is to introduce the generalized Laguerre matrix polynomials for two variables. We prove that these matrix polynomials are characterized by the generalized hypergeometric matrix function. An explicit representation, generating functions and some recurrence relations are obtained here. Moreover, these matrix polynomials appear as solution of a differential equation.

A Theoretical Model for Predicting Matrix Crack Density Growth (기지균열의 밀도증가를 예측하기 위한 이론적 모형)

  • 이종원;김진원;김응태;안석민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.203-206
    • /
    • 2002
  • The present study proposes a theoretical model for predicting the matrix crack density growth of each layer in composite laminates subjected to thermo-mechanical loads. Each layer with matrix cracks is treated as an equivalent continuum of degraded elastic stiffnesses which are functions of the matrix crack density in each slyer. The energy release rate as a function of the degraded elastic stiffnesses is then calculated for each layer as functions of thermo-mechanical loads externally applied to the laminate. The matrix crack densities of each layer in general laminates are predicted as functions of the thermo-mechanical loads applied to a number of laminates. Comparisons of the present study with experimental data in the open literatures are also provided.

  • PDF

Reanalysis for Correlating and Updating Dynamic Systems Using Frequency Response Functions (FRF를 이용한 동적 구조 시스템의 구조추정 및 재해석)

  • 한경봉;박선규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.49-56
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrected noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. One simulated system is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise Is also addressed.

  • PDF

A Study on Perfectly and Uniformly Structured Code Matrix (완벽하고 균일하게 구성되는 암호행렬에 관한 연구)

  • Yee, Soung-Ryong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.741-754
    • /
    • 1997
  • Code matrix is the matrix of which on element and its neighbors are arranged to have a code value. The code matrix was originally designed by the author for developing a vision system but has not been theoretically studied. In this paper some theoretical properties of the code matrix are investigated. The studied characteristics of the code matrix are useful for not only understanding the matrix itself but efficiently restructuring the matrix. A number of transformation functions, which enable the matrix to have different shape, are thus developed based on the investigated properties. The transformation functions are then applied to build a perfectly and uniformly structured square code matrix, which is proven useful in on image processing example. The study in this paper is expected to serve a theoretical background for the application of the code matrix in many areas.

  • PDF

GENERALIZED MATRIX FUNCTIONS, IRREDUCIBILITY AND EQUALITY

  • Jafari, Mohammad Hossein;Madadi, Ali Reza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1615-1623
    • /
    • 2014
  • Let $G{\leq}S_n$ and ${\chi}$ be any nonzero complex valued function on G. We first study the irreducibility of the generalized matrix polynomial $d^G_{\chi}(X)$, where $X=(x_{ij})$ is an n-by-n matrix whose entries are $n^2$ commuting independent indeterminates over $\mathbb{C}$. In particular, we show that if $\mathcal{X}$ is an irreducible character of G, then $d^G_{\chi}(X)$ is an irreducible polynomial, where either $G=S_n$ or $G=A_n$ and $n{\neq}2$. We then give a necessary and sufficient condition for the equality of two generalized matrix functions on the set of the so-called ${\chi}$-singular (${\chi}$-nonsingular) matrices.

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart;Kuntiyawichai, Kittisak;Spacone, Enrico;Kwon, Minho
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.39-53
    • /
    • 2012
  • This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.