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GENERALIZED MATRIX FUNCTIONS, IRREDUCIBILITY

AND EQUALITY

Mohammad Hossein Jafari and Ali Reza Madadi

Abstract. Let G ≤ Sn and χ be any nonzero complex valued function
on G. We first study the irreducibility of the generalized matrix polyno-
mial dG

χ
(X), where X = (xij) is an n-by-n matrix whose entries are n2

commuting independent indeterminates over C. In particular, we show
that if χ is an irreducible character of G, then dG

χ
(X) is an irreducible

polynomial, where either G = Sn or G = An and n 6= 2. We then give
a necessary and sufficient condition for the equality of two generalized
matrix functions on the set of the so-called χ-singular (χ-nonsingular)

matrices.

1. Introduction

Let Sn be the symmetric group of degree n, G an arbitrary subgroup of

Sn, and let χ : G → C be a function. Denote by Mn(C) the set of all n-by-n

matrices over C and define the function dGχ :Mn(C) → C as follows:

dGχ (A) =
∑

σ∈G

χ(σ)

n
∏

i=1

aiσ(i),

where A = (aij) ∈ Mn(C). The function dGχ is called the generalized matrix

function associated with G and χ. Note that if G = Sn and χ = 1G is the

principal character of G, then dGχ = per is the permanent, and if G = Sn and

χ = ε is the alternating character of G, then dGχ = det is the determinant.

We refer the reader to [4] and [5] for more information about generalized ma-

trix functions. Now let X = (xij) be an n-by-n matrix whose entries are n2

commuting independent indeterminates over C. Therefore,

dGχ (X) =
∑

σ∈G

χ(σ)

n
∏

i=1

xiσ(i)
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can be viewed as an element of C[x11, x12, . . . , xnn], the polynomial ring in the

variables x11, x12, . . . , xnn with coefficients in C. We call dGχ (X) the generalized

matrix polynomial associated with G and χ.

Our main aim in this paper is as follows: in Section 2, we first prove some

results about the irreducibility of polynomials and then, using them, we obtain

the irreducibility of dGχ (X) under some restrictions over G and χ; in Section 3,

by using Hilbert’s Nullstellensatz and results of Section 2, we give a criterion

for the equality of two generalized matrix functions on the set of the so-called

χ-singular (χ-nonsingular) matrices.

2. Irreducibility of dG
χ (X)

First we recall a few standard notation and definitions. Let C[x1, x2, . . . , xn]

be the polynomial ring in the variables x1, x2, . . . , xn with coefficients in C.

A product of the form x
α1

1 x
α2

2 · · ·xαn

n is called a monomial in x1, x2, . . . , xn,

where the αi are nonnegative integers. The total degree of this monomial is

the number
∑n
i=1 αi. A monomial is said to be square-free if all the αi are at

most 1. It is obvious that an element f of C[x1, x2, . . . , xn] can be uniquely

written as a finite linear combination of monomials with coefficients in C. The

total degree of f is the maximum total degrees of its monomials. We say that

a polynomial f is homogeneous of total degree m if for all t ∈ C,

f(tx1, tx2, . . . , txn) = tmf(x1, x2, . . . , xn).

It can be easily seen that a polynomial is homogeneous if and only if all its

monomials have the same total degrees.

The following, perhaps standard, theorem, which we have not found a ref-

erence for it, gives some information about the factors of a homogeneous poly-

nomial. We give a proof of it for the convenience of the reader.

Theorem 2.1. Let f, g, h ∈ C[x1, x2, . . . , xn] be nonzero and f = gh. If f is

homogeneous, then g and h are also homogeneous.

Proof. Let m, r, and s be the total degrees of f, g, and h, respectively. Then

we may write g and h as follows:

g = gr + · · ·+ g0, h = hs + · · ·+ h0,

where gk and hk are the homogeneous parts of g and h of total degree k,

respectively. Now let i and j be the least integers such that gi 6= 0 6= hj .

Therefore,

f = gh = gihj + l,

where either l = 0 or else l is a polynomial with monomials of total degrees at

least i+ j+1. Thus gihj 6= 0 is the homogeneous part of f of total degree i+ j.

But f is homogeneous of total degree m and so it has a unique homogeneous

part. We conclude that l = 0, i + j = m, i = r, j = s. Thus f = grhs and the

proof is complete. �
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How the factors of a polynomial with square-free monomials can be is the

statement of the next theorem.

Theorem 2.2. Let f, g, h ∈ C[x1, x2, . . . , xn] be nonzero and f = gh. If all

monomials of f are square-free, then all monomials of g and h are also square-

free and g ∈ C[A] and h ∈ C[B], where {A,B} is a partition of {x1, x2, . . . , xn}.
Proof. By symmetry it suffices to show that all monomials of g are square-

free and every indeterminate appearing in g does not appear in h. Let y ∈
{x1, x2, . . . , xn} be an indeterminate which appears in g. Then g and h can be

written as follows:

g = ary
r + · · ·+ a1y + a0, h = bsy

s + · · ·+ b1y + b0,

where the ai and bi are polynomials in which the indeterminate y does not

appear, ar 6= 0 6= bs, and r ≥ 1 because y appears in g. Therefore,

f = gh = arbsy
r+s + · · ·+ (a1b0 + a0b1)y + a0b0.

But all monomials of f are square-free, and so r + s = 1. This implies that

r = 1 and s = 0, completing the proof of the theorem. �

Remark 1. It is easy to see that if all the indeterminates x1, x2, . . . , xn appear in

f, then there is a unique partition {A,B} of {x1, x2, . . . , xn} such that g ∈ C[A]

and h ∈ C[B].

It is known that the polynomial ring C[x1, x2, . . . , xn] is a UFD, that is, every

nonconstant polynomial can be uniquely factored as a product of irreducible

polynomials. Therefore, as a consequence we obtain the following:

Corollary 2.3. Let f ∈ C[x1, x2, . . . , xn] be a nonconstant polynomial with

square-free monomials and f1, f2, . . . , fm be the distinct irreducible factors of

f. Then all monomials of the fi are also square-free, f = f1f2 · · · fm, and
fi ∈ C[Ai], where {A1, . . . , Am} is a partition of {x1, x2, . . . , xn}.
Remark 2. It is obvious that m ≤ deg f. Also, the last part of the above corol-

lary shows that m ≤ n, and the equality holds if and only if, after reordering

if necessary, fi = aixi + bi for some ai, bi ∈ C.

Now we summarize some properties of the polynomial dGχ (X) in the ring

C[x11, x12, . . . , xnn] in the next corollary.

Corollary 2.4. Let G ≤ Sn, and χ : G → C be a nonzero function. Also let

f1, f2, . . . , fm be the distinct irreducible factors of dGχ (X). Then

i) dGχ (X) is a homogeneous polynomial of total degree n with square-free

monomials;

ii) the fi are homogeneous polynomials with square-free monomials, m ≤
n, and dGχ (X) = f1f2 · · · fm;

iii) fi ∈ C[Ai], where {A1, . . . , Am} is a partition of {x11, x12, . . . , xnn}.
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For a given f ∈ C[x11, x12, . . . , xnn], let B be the set of all indeterminates

appearing in f, R = {r | ∃s, xrs ∈ B}, and C = {s | ∃r, xrs ∈ B}. In the next

theorem we give detailed information about dGχ (X).

Theorem 2.5. Assume that the hypotheses of Corollary 2.4 hold. Let also Bi,

Ri, and Ci be as above for fi. Then

i) if i 6= j, xrs ∈ Bi, xpq ∈ Bj , then r 6= p, s 6= q;

ii) if a monomial of fi contains distinct xrs, xpq, then r 6= p, s 6= q;

iii) |Ri| = |Ci| = deg fi;

iv) the number of monomials of fi is at most (deg fi)!;

v) the number of monomials of dGχ (X) is at most
∏m
i=1(deg fi)!.

Proof. To prove (i), we may assume by way of contradiction that there exist

xrs ∈ Bi and xrq ∈ Bj with i 6= j. By part (iii) of the previous corollary,

we know that xrs ∈ Ai and xrq ∈ Aj and Ai is disjoint from Aj . Hence

there must exist a square-free monomial, say g, in f1f2 · · · fm containing the

indeterminates xrs and xrq. Since d
G
χ (X) = f1f2 · · · fm, thus there must be a

σ ∈ G such that g =
∏n

i=1 xiσ(i). This implies that s = σ(r) = q, saying that

Ai is not disjoint from Aj , a contradiction. Similarly, if there are xrs ∈ Bi and

xps ∈ Bj with i 6= j, then we can get a contradiction.

The same method as above can be used to prove (ii).

To obtain (iii), first we claim that if χ(σ) 6= 0 for some σ ∈ G, then σ(Ri) ⊆
Ci. Let r ∈ Ri be arbitrary and so xrs ∈ Bi for some s. Since χ(σ) 6= 0, hence

the monomial
∏n

i=1 xiσ(i) must appear in dGχ (X) = f1f2 · · · fm. This implies

that xrσ(r) ∈ Bj for some j. By part (i), i = j and therefore σ(r) ∈ Ci. Now

from χ being nonzero, we conclude that {Ri : 1 ≤ i ≤ m} and {Ci : 1 ≤ i ≤ m}
are partitions of {1, 2, . . . , n}. Therefore by the claim we deduce that σ(Ri) =

Ci for each i. Hence |Ri| = |Ci|. By part (ii), deg fi ≤ |Ri|. But

n =

m
∑

i=1

deg fi ≤
m
∑

i=1

|Ri| = n,

and so deg fi = |Ri| for each i.
By combining together parts (ii) and (iii), we obtain (iv).

Finally part (iv) implies (v). �

Remark 3. The first part of the above theorem says that any two indeterminates

appearing in two distinct fi do not lie in the same row or in the same column

of the matrix X = (xij). Also the second part says that no two indeterminates

of Bi which lie in the same row or in the same column of the matrix X = (xij)

can appear in the same monomial of fi.

As a consequence we obtain the following:

Corollary 2.6. Let G ≤ Sn, and χ : G→ C be a nonzero function. Then

i) m = n if and only if dGχ (X) is a multiple of a monomial if and only if

there is a unique σ ∈ G such that χ(σ) 6= 0;
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ii) if G = Sn and χ is nonzero everywhere, then dGχ (X) is irreducible. In

particular, det(X) and per(X) are irreducible.

Proof. Part (i) can be deduced from part (iv) of the above theorem.

For part (ii), by hypothesis and part (v) of the above theorem we have

(

m
∑

i=1

deg fi)! = n! = |{σ ∈ Sn : χ(σ) 6= 0}| ≤
m
∏

i=1

(deg fi)! ≤ (

m
∑

i=1

deg fi)!,

hence the equality holds in the above. But this is possible if and only if m = 1.

This means that dGχ (X) must be irreducible. �

Our next goal is to give a refinement of part (ii) of the above corollary.

Theorem 2.7. Let G be the alternating group An for n ≥ 4 or the symmetric

group Sn for n ≥ 3. Let also χ : G→ C be a function which is nonzero on every

element of some nontrivial conjugacy class of G. Then dGχ (X) is irreducible.

Proof. Suppose that 1 6= σ ∈ G and K is the conjugacy class of σ in G such

that χ is nonzero on every element of K. Suppose also that σ = σ1 · · ·σr is

the decomposition of σ into the nontrivial disjoint cycles and σ1 = (i1i2 · · · is).
Let {is+1, . . . , in} be the complement of {i1, . . . , is} in {1, 2, . . . , n}. First as-

sume that n ≥ 4. Since χ(σ) 6= 0, so by notation of Theorem 2.5 the mono-

mial
∏n

i=1 xiσ(i), containing the indeterminate xi1i2 , must appear in dGχ (X) =

f1f2 · · · fm. Therefore, without loss of generality, we may assume that xi1i2
appears in f1 and hence xi1i2 ∈ B1. Now let ik 6= il be arbitrary such that

{i1, i2} ∩ {ik, il} = ∅. Consider the elements τ = (i2ikil), ν = (i1i2il) and

µ = (i1i2)(ikil) from G. Now τ−1στ, µ−1σµ, ν−1σν ∈ K and by hypothe-

sis neither of χ(τ−1στ), χ(ν−1σν), χ(µ−1σµ) is zero. But (τ−1στ)(i1) = ik,

(ν−1σν)(i2) = il, (µ
−1σµ)(i2) = i1, and so in a similar manner as above, we de-

duce that xi1ik , xi2il , xi2i1 all must appear in dGχ (X). Since xi1i2 ∈ B1, hence

by part (i) of Theorem 2.5, we have xi1ik ∈ B1, which in turn implies that

{i2, . . . , in} ⊆ C1. In particular, xi1il ∈ B1, and again by part (i) of Theorem

2.5 we have xi2il ∈ B1. Finally by the same reason xi2i1 ∈ B1. This means that

i1 ∈ C1 and so deg f1 = |C1| = n, showing that dGχ (X) = f1 and the proof is

complete in this case. The assertion can be proved similarly when G = S3. �

Remark 4. The above theorem may be false if G is different from Sn or An.

For example, if we let G = {1, (12), (34), (12)(34)} ≤ S4 and χ = 1G be the

principal character of G, then dGχ (X) is reducible since

dGχ (X) = (x11x22 + x12x21)(x33x44 + x34x43).

The following result is a consequence of the above theorem.

Corollary 2.8. Let G = An for n 6= 2 or G = Sn and χ be an irreducible

character of G. Then dGχ (X) is irreducible.
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3. On χ-singular and χ-nonsingular matrices

From linear algebra we know that a matrix A ∈ Mn(C) is called singular if

det(A) = 0 and nonsingular if det(A) 6= 0, that is, dSn

ε (A) = 0 and dSn

ε (A) 6= 0,

respectively. Motivated by this, we introduce a more general concept. Let

G ≤ Sn and χ : G → C be a function. A matrix A ∈ Mn(C) is said to be χ-

singular if dGχ (A) = 0 and χ-nonsingular if dGχ (A) 6= 0. So an ordinary singular

(nonsingular) matrix is in fact an ε-singular (ε-nonsingular) matrix. Also a

matrix A ∈ Mn(C) is 1Sn
-singular if and only if per(A) = d

Sn

1Sn

(A) = 0. The

following is Theorem 2.1 in [3].

Theorem 3.1. Let G ≤ Sn and χ : G → C be a nonzero function. Then the

following are equivalent:

i) dGχ (A) 6= 0 for all ε-nonsingular matrices A;

ii) dGχ (A) = 0 for all ε-singular matrices A;

iii) G = Sn and χ = χ(1)ε.

The above theorem as well as all other results of [3] with slight changes in

proofs remain true if one substitutes 1Sn
for ε. Our next goal is to generalize

the above theorem. Unfortunately, the proof given in [3] does not work in the

general case and so we have to take a totally different approach.

Before stating the next theorem, we recall a few notation, definitions, and

Hilbert’s Nullstellensatz from [2].

Let R be a commutative ring with identity and I an ideal of R. The radical

of I, denoted by
√
I or rad(I), is defined as follows:
√
I = {r ∈ R | rn ∈ I for some n ∈ N},

which is obviously an ideal of R containing I.

For a subset T of Cn we define I(T ) as follows:
I(T )={f ∈ C[x1, x2, . . . , xn] | f(a1, a2, . . . , an)= 0 for all (a1, a2, . . . , an)∈ T },
which is certainly an ideal of C[x1, x2, . . . , xn].

Also for a subset S of C[x1, x2, . . . , xn] we define Z(S) as follows:

Z(S) = {(a1, a2, . . . , an) ∈ C
n | f(a1, a2, . . . , an) = 0 for all f ∈ S}.

Now Hilbert’s Nullstellensatz states that if I is an ideal of C[x1, x2, . . . , xn],

then I(Z(I)) =
√
I.

We are now ready to prove the next theorem from which our generalization

of the above theorem will be derived. Though the following theorem has been

proved in [1], but our proof, which uses Hilbert’s Nullstellensatz and results of

the previous section, is entirely different than theirs.

Theorem 3.2. Let χ, ϕ : Sn → C be two functions. If every χ-singular matrix

of Mn(C) is a ϕ-singular matrix, then there is a c ∈ C such that ϕ = cχ.
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Proof. If χ = 0, then all matrices in Mn(C) are χ-singular and so, by hypothe-

sis, are ϕ-singular. Hence for an arbitrary σ ∈ Sn, we have ϕ(σ) = dSn

ϕ (Aσ) = 0,

where Aσ is the permutation matrix induced by σ. Thus ϕ = 0 and the result

follows in this case. Also, if ϕ = 0, then by taking c = 0 the result follows too.

Assume now that χ 6= 0 6= ϕ. Therefore dSn

χ (X) and dSn

ϕ (X) are nonzero

homogeneous polynomials with the same total degree n. Let I and J be the

ideals of the ring C[x11, x12, . . . , xnn] generated by the polynomials dSn

χ (X)

and dSn

ϕ (X), respectively. By hypothesis we have Z(I) ⊆ Z(J) and hence

I(Z(J)) ⊆ I(Z(I)). Therefore
√
J ⊆

√
I by Hilbert’s Nullstellensatz, and

since dSn

ϕ (X) ∈ J ⊆
√
J we obtain (dSn

ϕ (X))k ∈ I for some k ∈ N. This

implies that (dSn

ϕ (X))k is divisible by dSn

χ (X). Therefore, dSn

ϕ (X) is divisible

by dSn

χ (X) by part (ii) of Corollary 2.4. So there exists a c ∈ C such that

dSn

ϕ (X) = cdSn

χ (X). This means that ϕ = cχ and the proof is complete. �

Before giving the next results, we introduce a notation. For G ≤ Sn and

χ a complex valued function defined on G, let χ̂ be an extension of χ to Sn
which vanishes outside of G. It is obvious that dGχ = d

Sn

χ̂ . Hence a matrix

A ∈ Mn(C) is χ-singular if and only if it is χ̂-singular. The next consequence

is a generalization of Theorem 3.1.

Corollary 3.3. Let H and K be two subgroups of Sn, and let χ : H → C and

ϕ : K → C be two nonzero functions. Then the following are equivalent:

i) every ϕ-nonsingular matrix of Mn(C) is a χ-nonsingular matrix;

ii) every χ-singular matrix of Mn(C) is a ϕ-singular matrix;

iii) χ and ϕ vanish outside of H ∩K, and there exists a c ∈ C such that

ϕH∩K = cχH∩K ;

iv) χ and ϕ vanish outside of H ∩K, and there exists a c ∈ C such that

χH∩K = cϕH∩K ;

v) every ϕ-singular matrix of Mn(C) is a χ-singular matrix;

vi) every χ-nonsingular matrix of Mn(C) is a ϕ-nonsingular matrix.

Proof. Let χ̂ and ϕ̂ be as above. Since a matrix A ∈ Mn(C) is χ-singular

(ϕ-singular) if and only if it is χ̂-singular (ϕ̂-singular), the result follows from

Theorem 3.2. �

The following theorem can be viewed as a generalization of Theorem 2.2 of

[3].

Theorem 3.4. Let G,H,K ≤ Sn, and χ, ϕ, ψ be complex valued functions de-

fined on G,H,K, respectively, with χ(1) 6= 0. Then the following are equivalent:

i) dHϕ (A) = dKψ (A) for all χ-nonsingular matrices A;

ii) dHϕ (A) = dKψ (A) for all χ-singular matrices A, and ϕ(1) = ψ(1);

iii) ϕ and ψ vanish outside of H ∩K, and ϕH∩K = ψH∩K .

Proof. It is trivial that (iii) implies (i) and (ii).
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We now show that (i) implies (iii). It is sufficient to show the claim ϕ̂(σ) =

ψ̂(σ) for all σ ∈ Sn. Let σ = σ1 · · ·σr be the decomposition of σ into the

nontrivial disjoint cycles. We prove the above claim by induction on r. If r = 0

then σ = 1, and since In is χ̂-nonsingular by hypothesis, so

ϕ̂(1) = d
Sn

ϕ̂ (In) = d
Sn

ψ̂
(In) = ψ̂(1).

Assume now that r > 0. If χ̂(σ) 6= 0, then Aσ, the permutation matrix induced

by σ, is χ̂-nonsingular and so

ϕ̂(σ) = d
Sn

ϕ̂ (Aσ) = d
Sn

ψ̂
(Aσ) = ψ̂(σ).

Therefore we may assume that χ̂(σ) = 0. Since χ(1) 6= 0, so there exists a

permutation τ so that it can be written as a product of s distinct elements of

the set {σ1, . . . , σr} with χ̂(τ) 6= 0 and s as maximum as possible. Obviously

0 ≤ s < r. Without loss of generality, we may assume that τ = σ1 · · ·σs. Let
Γ0 = {1} and for 1 ≤ k ≤ r − s, let Γk be the set of all permutations that can

be written as a product of k distinct elements of the set {σs+1, . . . , σr}. We

define the diagonal matrix B = (bij) ∈Mn(C) as follows:

bij =

{

δij i ∈ Fix(τ)− Fix(σ)

0 i /∈ Fix(τ) − Fix(σ).

If A = Aσ +B, then by the maximality of s we have

d
Sn

χ̂ (A) =

r−s
∑

k=0

∑

λ∈Γk

χ̂(τλ) = χ̂(τ) 6= 0.

This implies that the matrix A is χ̂-nonsingular and so by hypothesis we obtain

ϕ̂(σ) +

r−s−1
∑

k=0

∑

λ∈Γk

ϕ̂(τλ) = d
Sn

ϕ̂ (A) = d
Sn

ψ̂
(A) = ψ̂(σ) +

r−s−1
∑

k=0

∑

λ∈Γk

ψ̂(τλ).

But by induction we have

r−s−1
∑

k=0

∑

λ∈Γk

ϕ̂(τλ) =

r−s−1
∑

k=0

∑

λ∈Γk

ψ̂(τλ).

Therefore ϕ̂(σ) = ψ̂(σ), and the result follows.

Finally we show that (ii) implies (iii). By hypothesis, for all χ̂-singular

matrices A, we have

d
Sn

ϕ̂ (A) = dHϕ (A) = dKψ (A) = d
Sn

ψ̂
(A),

and so dSn

ϕ̂−ψ̂
(A) = 0. Thus by Theorem 3.2, ϕ̂− ψ̂ = cχ̂ for some c ∈ C. Since

χ(1) 6= 0 and ϕ(1) = ψ(1), so c = 0. This implies that ϕ̂ = ψ̂, and the proof is

complete. �
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Remark 5. First note that if χ is a character of G, then automatically χ(1) 6= 0.

Also, the condition ϕ(1) = ψ(1) in case (ii) of the above theorem is essential.

This is because if ϕ is any function of Sn, then dSn

ϕ (A) = d
Sn

ϕ+ε(A) for all ε-

singular matrices A. Of course, the authors in Theorem 2.2 of [3] showed that

the condition ϕ(1) = ψ(1) can be removed if G = Sn, χ = ε or 1Sn
, and ϕ and

ψ are irreducible characters. But, in general, we cannot expect to get a similar

theorem here. For example, let G = H = A3 and K = S3. Also let χ, ϕ be

the two distinct nonprincipal linear characters of A3 and ψ be the nonlinear

irreducible character of S3. It is obvious that ψ = χ̂+ ϕ̂ and therefore for all

χ-singular matrices A we have

dKψ (A) = d
S3

χ̂+ϕ̂(A) = d
S3

χ̂ (A) + d
S3

ϕ̂ (A) = dHϕ (A).
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