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GENERALIZATION OF LAGUERRE MATRIX

POLYNOMIALS FOR TWO VARIABLES

Asad Ali∗ and Muhammad Zafar Iqbal

Abstract. The main object of the present paper is to introduce the gen-

eralized Laguerre matrix polynomials for two variables. We prove that

these matrix polynomials are characterized by the generalized hypergeo-
metric matrix function. An explicit representation, generating functions

and some recurrence relations are obtained here. Moreover, these matrix

polynomials appear as solution of a differential equation.

1. Introduction and preliminaries

Orthogonal matrix polynomials comprise an emerging fields of study, with
important results in both Lie group theory and number theory its applications
being still is contained to appear in the literature. Theory of classical orthogo-
nal polynomials are extended to the orthogonal matrix polynomials ([9]). The
study of functions of matrices is a very popular topic in the Matrix Analysis
literature. Matrix generalization of special functions has become important
in the last two decades. The reason of importance have many motivations.
For instance, using special matrix functions provides solutions for some phys-
ical problems. Also, special matrix functions are in connection with different
matrix functions ([4], [8], [14]). Jodar et al introduced Laguerre matrix poly-
nomials in ([11]). Some important properties of Laguerre matrix polynomials
such as asymptotic expressions relations between different matrix functions and
generating matrix functions are studied ( [8], [9], [11]). Indeed, in recent pa-
pers, matrix polynomials have significant emergent. Some results in the theory
of classical orthogonal polynomials have been extended to orthogonal matrix
polynomials ( [1], [2], [4], [5], [7], [11], [13]) Throughout this paper, for a ma-
trix A in Cr×r, its spectrum σ(A) denotes the set of all eigenvalues of A. The
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two-norm will be denoted by ||A||2 and it is defined by ([10])

||A||2 = sup
x ̸=0

||Ax||2
||x||2

where for a vector x in Cr×r, ||x||2 = (xTx)
1
2 is the Euclidean norm of x. Let

us denote the real numbers M(A) and m(A) as in the following

(1) M(A) = max {Re(z) : z ∈ σ(A)} ;m(A) = min {Re(z) : z ∈ σ(A)} .

If f(z) and g(z) are holomorphic functions of the complex variable z, which are
defined in an open set of the complex plane, and A, B are matrices in Cr×r,
with σ(A) ⊂ Ω and σ(B) ⊂ Ω, such that AB = BA, then from the properties
of the matrix functional calculus in ([6]) , it follows that

(2) f(A)g(B) = g(B)f(A).

Throughout this study, a matrix polynomial of degree n in x means an expres-
sion of the form n

(3) Pn(x) = Anx
n +An−1x

n−1 + ...+A1x
1 +A0.

where x is a real variable or complex variable, Aj , for 0 ≤ j ≤ n and An ̸= 0,
where 0 is the null matrix or zero matrix in Cr×r. We recall reciprocal gamma
function denoted by Γ−1(z) = 1

Γ(z) is an entire function of the complex variable

z. Then, for any matrix A in Cr×r, the image of Γ−1(A) acting on A, denoted
by Γ−1(A) is a well defined matrix. Furthermore, if A is a matrix such that

(4) A+ nI is invertible for every integer n ≥ 0,

where I is the identity matrix in Cr×r, then from ([11]) it follows that

(5) (A)n = A(A+ I)...(A+ (n− 1)I) = Γ(A+ nI)Γ−1(A);n ≥ 1; (A)0 = 1.

If A is a positive stable matrix in Cr×r, then the gamma matrix function, Γ(A),
is defined ([12]) by

(6) Γ(A) =

∫ ∞

0

e−ttA−1dt, Re(A) > 0.

And if A,B is a positive stable matrices in Cr×r, then the beta matrix function,
β(A,B), are defined ([12]) by

(7) β(A,B) =

∫ 1

o

tA−1(1− t)B−1dt, Re(A) >,Re(B) > 0.

The generalized hypergeometric matrix function pFq (p, q ∈ N) given in ([13])

(8)
pFq

[
A1, . . . , Ap ;

B1, . . . , Bq ;
x

]
=

∞∑
n=0

(A1)n · · · (Ap)n
(B1)n · · · (Bq)n

xn

n!

= pFq(A1, . . . , Ap; B1, . . . , Bq; x).
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Where Ai and Bj are matrices in Cr×r such that Bj ; 1 ≤ j ≤ q satisfy
condition. With p = 1 and q = 0, one gets the following relation by ([13])

(9) 1F0(A;−;x) = (1− x)−A =

∞∑
n=0

(A)nx
n

n!
,

In ([12], [14], [15]) if λ is a complex number with Re(λ) > 0 and A is a positive
stable matrix in Cr×r, with A+ nI invertible for every integer n ≥ 1, then the

nth Laguerre matrix polynomials L
(λ,A)
n (x, y) for two variables are defined by

the following generating matrix relation:

(10)

∞∑
n=0

L(λ,A)
n (x, y)tn = (1− yt)−I−Ae(

−λxt
1−yt ).

From the above equation we have

(11) L(λ,A)
n (x, y) =

n∑
k=o

(I +A)n(−xλ)k(y)n−k

(n− k)!(I +A)kk!
, λ ≥ 0.

The second-order matrix differential equations of the form

(12)

(
xI

d2

dx2
+

(
(1 +A)− λ

x

y

)
I
d

dx
+

nI

y

)
L
(λ,A)
1,n (x, y) = 0.

where n ∈ N, and A ∈ Cr×r. And Cr×r denotes the vector space containing all
square matrices with r rows and r columns with entries in the complex number
C.

2. Generalized Laguerre Matrix polynomials for two variables

We begin by defining generalized Laguerre matrix polynomials L
(λ,A)
p,n (x, y)

for two variables by the following generating function:

(13)
1

(1− yt)I+A
exp

(
−λxptp

(1− yt)p

)
=

∞∑
n=0

L(λ,A)
n,p (x, y) tn

(
p ∈ N; x, y ∈ C, A ∈ Cr×r

)
.

Here and elsewhere, let N, R and C be the sets of positive integers, real num-
ber and complex numbers, respectively, and let N0 := N ∪ {0}. Obviously

L
(λ,A)
n,1 (x, y) = L

(λ,A)
n (x, y).

Hereafter we explore certain formulas and properties involving the general-
ized Laguerre Matrix polynomials in (13). Throughout, let F (p;λ, x, y, t) be
the left-handed generating function in (13).
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Explicit representation.

We give an explicit expression of the generalized Laguerre matrix polyno-

mials L
(λ,A)
n,p (x, y) for two variables in the following theorem.

Theorem 2.1. Let x,∈ C, p ∈ N, n ∈ N0 and A is positive stable matrix
in Cr×r. Then

(14) L(λ,A)
n,p (x, y) = (I +A)n

[n/p]∑
k=0

(−λ)k(y)n−pk

k! (I +A)pk (n− pk)!
xpk

(15) =
(I +A)n

n!

[n/p]∑
k=0

(λ)k(−1)(p+1)k (−nI)pk(y)
n−pk

k! (I +A)pk
xpk.

Here and throughout, [m] denotes the greatest integer less than or equal to
m ∈ R. Or, equivalently,
(16)

L(λ,A)
n,p (x, y) =

(I +A)ny
n

n!
pFp


−n

p
I,

−n+ 1

p
I, . . . ,

−n− 1 + p

p
I ;

A+ I

p
,
A+ 2I

p
, . . . ,

A+ pI

p
;

(−1)p+1 λ

(
x

y

)p

 .

Proof. Expanding the exponential in the left-hand side of (13), we find

F (p;λ, x, y, t) =
1

(1− yt)I+A+pk

∞∑
k=0

λk(−1)k xpk tpk

k!
.

Employing the binomial theorem

(17) (1− x)−A = 1F0(A;−;x) =

∞∑
n=0

(A)nx
n

n!
, (A ∈ Cr×r; |x| < 1),

we obtain the following double series

(18) F (p;λ, x, y, t) =

∞∑
n=0

∞∑
k=0

(−1)kλk (I +A+ pk)n x
pkyn

k!n!
tn+pk.

Recall ([11]) if A(n, k) and B(n, k) are matrices in Cr×r and satisfying the
spectral condition (4) for n ≥ 0, k ≥ 0, then it follows that

(19)

∞∑
n=0

∞∑
k=0

A(n, k) =

∞∑
n=0

n∑
k=0

A(n, n− k),

(20)

∞∑
n=0

∞∑
k=0

A(n, k) =

∞∑
n=0

[np ]∑
k=0

A(n, n− pk), (p ∈ N),
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(21)

∞∑
n=0

[np ]∑
k=0

A(n, k) =

∞∑
n=0

∞∑
k=0

A(n, n+ pk), (p ∈ N),

where Ax,y denotes a function of two variables x and y and the involved
double series is assumed to be absolutely convergent.

Applying (20) in (18), we get

(22) F (p;λ, x, y, t) =

∞∑
n=0

[n/p]∑
k=0

(−1)kλk (I +A+ pk)n−pk x
pkyn−pk

k! (n− pk)!
tn.

Equating the coefficients of tn in the right members of (13) and (22) yields

(23) L(λ,A)
n,p (x, y) =

[n/p]∑
k=0

(−1)kλk (I +A+ pk)n−pk

k! (n− pk)!
xpkyn−pk.

Using ([12]) a known identity

(24)
1

(n− k)!
I =

(−1)k(−nI)k
n!

(k, n ∈ N0; 0 ≤ k ≤ n) ,

we derive
(25)

(I+A+pk)n−pk =
(I +A)n
(I +A)pk

and
1

(n− pk)!
I =

(−1)pk(−nI)pk
n!

; 0 ≤ pk ≤ n.

Hence, using (25) in (23) leads to the desired identity (15).

Finally, applying the multiplication formula

(−1)pk(−nI)pk
n!

=
(−1)pk(p)pk

n!

p∏
j=1

(
j − n− 1

p
I

)
n

; 0 ≤ pk ≤ n.(26)

( p ∈ N; n ∈ N0)

to (15) gives the equivalent expression (16).

Generating function.

We establish two generating functions for the generalized Laguerre matrix

polynomials L
(λ,A)
n,p (x, y) for two variables in the following theorem.

Theorem 2.2. Let λ, t, x, y c ∈ C, p ∈ N and A is positive stable matrix
in Cr×r and satisfying the spectral condition (4). Then

(27)

eyt 0Fp

(
;
A+ I

p
,
A+ 2I

p
, . . . ,

A+ pI

p
; −λ

(
xzt

p

)p)
=

∞∑
n=0

L
(λ,A)
n,p (x, y) tn

(I +A)n



146 A. Ali and M. Z. Iqbal

and

(28)

1

(1− yt)c
pFp

(
c
p ,

c+1
p , . . . , c+p−1

p ;
A+I
p , A+2I

p , . . . , A+pI
p ;

− λ

(
xt

1− yt

)p
)

=

∞∑
n=0

(c)n L
(λ,A)
n,p (x, y) tn

(I +A)n
(|t| < 1).

Proof. Using (14), (21), and (26), we have

(29)

∞∑
n=0

L
(λ,A)
n,p (xz, y) tn

(I +A)n
=

∞∑
n=0

(yt)n

n!

∞∑
k=0

(−λxpzptp)k

k! (I +A)pk

= eyt
∞∑
k=0

(−λ)k

k!
p∏

j=1

(
A+jI

p

)
k

(
xzt

p

)pk

.

In view of (8), the rightmost term of (29) can be expressed as the left-hand
side of (27).

Employing (14), (17), and (21), we find

∞∑
n=0

(c)n L
(λ,A)
n,p (x, y) tn

(I +A)n
=

∞∑
k=0

∞∑
n=0

(c+ pk)n (yt)
n

n!
· (c)pk {−λ(xt)p}k

k! (I +A)pk

=
1

(1− yt)c

∞∑
k=0

(c)pk
k! (I +A)pk

{
−λ

(
xt

1− yt

)p}k

,

which, upon using (26) and (8), leads to the left-hand member of (28).

It is noted that the case c = I + A of (28) yields the generating function
(13).

Recurrence relation.

We give some recurrence relations involving the generalized Laguerre matrix

polynomials L
(λ,A)
n,p (x, y) for two variables and their derivative in the following

theorem.

Theorem 2.3. Let λ, t, x, c ∈ C, p ∈ N and A is positive stable matrix in
Cr×r and satisfying the spectral condition (4). Also let D = d

dx . Then

(30) xλDL(λ,A)
n,p (x, y)− nL(λ,A)

n,p (x, y) + y(A+ (n+ 1)I)L
(λ,A)
n−1,p(x, y) = 0;

(31) DL(λ,A)
n,p (x, y) =

{
0 (0 ≤ n ≤ p− 1)

−p λxp−1 L
(λ,A+p)
n−p,p (x, y) (n ≥ p);
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(32)

y(A+ (n+ 1)I)L
(λ,A)
n−1,p(x, y)− nL(λ,A)

n,p (x, y) = p λ2xp L
(λ,A+p)
n−p,p (x, y) (n ≥ p).

Proof. From (29), we can set

(33) G(p;λ, x, y, t) :=

∞∑
n=0

L
(λ,A)
n,p (x) tn

(I +A)n
= eyt Φ

(
−λxptp

pp

)
,

where the function

Φ

(
−λxp tp

pp

)
=

∞∑
k=0

(−λ)k

k!
p∏

j=1

(
A+jI

p

)
k

(
xt

p

)pk

.

Differentiating G(p;λ, x, y, t) with respect to x and t, respectively, gives

Gx(p;λ, x, y, t) = eyt Φ′
(
−λxp tp

pp

)
· −λ

pp−1
xp−1 tp

and

Gt(p;λ, x, y, t) = yeytΦ

(
−λxp tp

pp

)
+ eyt Φ′

(
−λxp tp

pp

)
· −λ

pp−1
xp tp−1.

Combining Gx(p;λ, x, y, t) and Gt(p;λ, x, y, t) yields

(34) λxGx(p;λ, x, y, t)− tGt(p;λ, x, y, t) + ytG(p;λ, x, y, t) = 0.

Applying the series in (33) to (34), we obtain
(35)

∞∑
n=1

λxDL
(λ,A)
n,p (x, y) tn

(I +A)n
−

∞∑
n=1

nL
(λ,A)
n,p (x, y) tn

(I +A)n
+ y

∞∑
n=1

L
(λ,A)
n−1,p(x, y) t

n

(I +A)n−1
= 0.

We find from (35) that each coefficient of tn should be zero, which gives (30).

Differentiating both sides of (13) provides

∞∑
n=1

DL(λ,A)
n,p (x, y) tn =

1

(1− yt)I+A+p
exp

(
−λxptp

(1− yt)p

)
·
(
−λpxp−1 tp

)
= −pλxp−1

∞∑
n=0

L(λ,A+p)
n,p (x, y) tn+p

= −pλxp−1
∞∑

n=p

L
(λ,A+p)
n−p,p (x) tn,

which, upon equating the coefficients of tn (n ≥ p) in the leftmost and rightmost
members, produces (31).

Setting (31) in (30) provides (32).
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Differential equation.

We provide a differential equation which is satisfied by the generalized La-

guerre polynomials L
(λ,A)
n,p (x, y) for two variables in the following theorem (for

differential equation whose solution is pFq, see, e.g., [15, Section 47]).

Theorem 2.4. Let λ, t, x, c ∈ C, p ∈ N and A is positive stable matrix in
Cr×r and satisfying the spectral condition (4). Also let θ = x d

dx . Then1
p
θ

p∏
j=0

(
1

p
(θI − I +A+ jI)

)

+λ(−1)p−1

(
x

y

)p p∏
j=0

1

p
(θ + j − n− 1)I

L(λ,A)
p,n (x, y) = 0.

(36)

Proof. We find from (15) that

ϕ =
(I +A)n(y)

n

n!
pFp

(
−n

p
I,

−n+ 1

p
I...

−n+ p− 1

p
I;

I +A

p
,
2I +A

p
...
pI +A

p
;λ(−1)p−1

(
x

y

)p)
.

=
(I +A)n

n!

[np ]∑
k=o

p∏
j=1

(
j−n−1

p I
)
k
(−1)(p−1)kλkxpk(y)n−pk

p∏
j=1

(
jI+A

p

)
k
k!

,

Since 1
pθx

pk = kxpk, it follows that

1
p
θ

p∏
j=0

I

p
(θ − 1 +A+ j)

 =
(I +A)n

n!

[np ]∑
k=o

p∏
j=1

(
jn−1

p I
)
k

(
j+A+k−1

p I
)
(−1)(p−1)kλkxpk(y)n−pk

p∏
i=1

(
jI+A

p

)
k
(k − 1)!

,

But the last factor in
(

jI+A
p

)
k
is
(

jI+A+k−1
p

)
so that

=
(I +A)n

n!

[np ]∑
k=o

p∏
j=1

(
j−n−1

p I
)
k
(−1)(p−1)kλkxpk(y)n−pk

p∏
j=1

(
jI+A

p

)
k−1

(k − 1)!

,

Now we replace k by (k+1) and have

1
p
θ

p∏
j=0

1

p
(θ − 1 +A+ j) I

 =
(I +A)n

n!

[np ]∑
k=o

p∏
j=1

(
j−n−1

p I
)
k+1

(−1)(p−1)(k+1)λk+1xp(k+1)(y)n−p(k+1)

p∏
j=1

(
jI+A

p

)
k
k!

,
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= λ(−1)p−I

(
x

y

)p
(I +A)n

n!

[np ]∑
k=o

p∏
j=1

(
j−n−1

p I
)
k

p∏
j=1

(
k+j−n−1

p I
)
(−1)(p−1)kλkxpk(y)n−pk

p∏
j=1

(
jI+A

p

)
k
k!

,

= λ(−1)p−1

(
x

y

)p
 p∏
j=0

1

p
(θ + j − n− 1)I

ϕ.

Some other properties.

We provide some other identities involving the generalized Laguerre poly-

nomials L
(λ,A)
n,p (x, y) for two variables in the following theorem.

Theorem 2.5. Let λ, t, x, y c ∈ C, p, n ∈ N and A, B is positive stable
matrix in Cr×r and satisfying the spectral condition (4). Then

(37) L(λ,A)
n,p (x, y) =

n∑
k=0

(A−B)k L
(λ,B)
n−k,p(x, y)

k!
;

(38) L(λ,A+B+I)
n,p (z, y) =

n∑
k=0

L
(λ,A)
k,p (x, y)L

(λ,B)
n−k,p(z, y),

where xp + zp ∈ C \ {0} and w := (xp + zp)
1
p whose principal branch can be

chosen;

(39) L(λ,A)
n,p (xz, y) =

n∑
k=0

(I +A)n (1− z)n−k zk L
(λ,A)
k,p (x, y)

(n− k)! (I +A)k
.

Proof. From (13), we have

∞∑
n=0

L(λ,A)
n,p (x, y) tn = (1− yt)−I−A exp

(
−λxptp

(1− yt)p

)
= (1− t)−(A−B) · (1− yt)−I−B exp

(
−λxptp

(1− yt)p

)
=

∞∑
n=0

∞∑
k=0

(A−B)k
k!

L(λ,B)
n,p (x, y)tn+k

=

∞∑
n=0

n∑
k=0

(A−B)k
k!

L
(λ,B)
n−k,p(x, y)t

n,

which, upon equating the coefficients of tn, yields (37).
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We find from (13) that
∞∑

n=0

n∑
k=0

L
(λ,A)
k,p (x, y)L

(λ,B)
n−k,p(z, y) t

n

= (1− yt)−I−A exp

(
−λxptp

(1− yt)p

)
(1− t)−I−B exp

(
−λzptp

(1− yt)p

)
= (1− yt)−I−(A+B+I) exp

(
−λwptp

(1− yt)p

)
=

∞∑
n=0

L(A+B+I)
n,p (w, y) tn,

which, upon equating the coefficients of tn, gives (38).

We consider

eyt 0Fp

(
;
A+ I

p
,
A+ 2I

p
, . . . ,

A+ pI

p
; −λ

(
xzt

p

)p)
= e(1−z)yt eyzt 0Fp

(
;
A+ I

p
,
A+ 2I

p
, . . . ,

A+ pI

p
; −λ

(
x(zt)

p

)p)
,

which, in view of (27), produces

∞∑
n=0

L
(λ,A)
n,p (xz, y) tn

(I +A)n
=

( ∞∑
n=0

(1− zt)n yntn

n!

)( ∞∑
k=0

L
(λ,A)
k,p (x, y) zktk

(I +A)k

)
.

Then, from the last equality, we obtain (39).

3. Conclusion remarks

The generalized Laguerre matrix polynomials for two variables are intro-
duced here and their properties and formulas presented are hoped to be poten-

tially useful. Since L
(λ,A)
n,1 (x, y) = L

(λ,A)
n (x, y), the results in Section 2 reduce

to yield certain properties and formulas for the classical Laguerre matrix poly-

nomials L
(λ,A)
n (x, y) for two variables.
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