• Title/Summary/Keyword: Matrix converter

Search Result 181, Processing Time 0.033 seconds

Implementation of an Efficient Algorithm for a Single Phase Matrix Converter

  • Gola, Ajay Kumar;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.198-206
    • /
    • 2009
  • An algorithm is developed that enables a single-phase matrix converter (SPMC) to perform functions of a generalized single phase power electronics converter such as acting as a frequency changer, rectifier, inverter, and chopper. This reduces the need for new converter hardware. The algorithm is implemented first on computer simulation software Orcad Capture CIS version 9.1. Simulation results are presented for five types of converters with a control input variable that decides the 1) type of converter and 2) type of output waveform. The simulated results verify the working and operation of a generalized converter based on SPMC. Simulated results are verified with experimental results. Hardware design is obtained using readily available ICs and other components. The trigger circuit has been tested qualitatively by observing waveforms on CRO. The operation of the proposed system has been found to be satisfactory.

Back ground and frontier on Matrix Converter (PWM Cyclo-Converter) for new drive system in next generation

  • Koga, Takashi;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.200-207
    • /
    • 2003
  • Today we have excellent motor drive system using high frequency carrier PWM control voltage source inverter with vector control strategy. In the other hand, we have met serious problems caused by high frequency switching. PWM Cyclo-converter called Matrix converter is expected as the new strategy possible to improve these problems and add some more convenient features suitable for new drive system with system integration. In this paper, we will introduce the background of this development and features of this converter from our research, additionally introduce remarkable active promotions for this converter as a survey.

  • PDF

Performance Improvement of Reduced Order Extended Luenberger Observer(ROELO) based Sensorless Vector Control Fed by Matrix Converter With Non-linearity Modeling (비선형모델을 이용한 matrix convertor로 구동되는 축소차원 확장 루엔버거 관측기기반의 유도전동기 센서리스 벡터제어의 성능개선)

  • Lee Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.363-372
    • /
    • 2005
  • This paper presents an improved sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching devices is corrected by a new matrix converter model. A Reduced Order Extended Luenberger Observer (ROELO) is employed to bring better response in the whole speed operation range and a method to select the observer gain is presented. Experimental results are shown to illustrate the performance of the proposed system.

Wind Power System using Doubly-Fed Induction Generator and Matrix Converter (매트릭스컨버터와 이중여자유도발전기를 사용한 풍력발전시스템)

  • Lee, Dong-Geun;Kwon, Gi-Hyun;Han, Byung-Moon;Li, Yu-Long;Choi, Nam-Sup;Choy, Young-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.985-993
    • /
    • 2008
  • This paper proposes a new DFIG(Doubly-Fed Induction Generator) system using matrix converter, which is very effectively used for interconnecting the wind power system to the power grid. The operation of proposed system was verified by computer simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was conformed by experimental works with a laboratory scaled-model of wind power system. The laboratory scaled-model was built using a motor-generator set with vector drive system, and a matrix converter with DSP(Digital Signal Processor). The operation of scaled-model was tested by modeling the specific variable-speed wind turbine using the real wind data in order to make the scaled-model simulate the real wind power system as close as possible. The simulation and experimental results confirm that matrix converter can be applied for the DFIG system.

Improving the Output Current of Matrix Converter under Abnormal Input Voltage Conditions using a Neural Network Compensator (입력 전원 외란 상황에서의 신경회로망 기반 전류 보상기를 이용한 매트릭스 컨버터의 출력 전류 개선)

  • Lee, Eun-Sil;Park, Ki-Woo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 2010
  • Matrix converter is an energy conversion device of controlled power semiconductor switches that directly connects the three-phase source to the three-phase load. With no dc-link components for energy storage in the matrix converter the input current depends directly upon the load currents and the switch state of the converter. Therefore the unbalanced and distorted input voltages can result in unwanted output harmonic currents. This paper presents a current compensator based on neural network to improving output current quality for matrix converter under abnormal input voltage conditions. The effectiveness and feasibility of the proposed technique has been proven through numerical simulations and experimental tests.

Passivity-Based Control System of Permanent Magnet Synchronous Motors Based on Quasi-Z Source Matrix Converter

  • Cheng, Qiming;Wei, Lin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1527-1535
    • /
    • 2019
  • Because of the shortcomings of the PID controllers and traditional drive systems of permanent magnet synchronous motors (PMSMs), a PMSM passivity-based control (PBC) drive system based on a quasi-Z source matrix converter (QZMC) is proposed in this paper. The traditional matrix converter is a buck converter with a maximum voltage transmission ratio of only 0.866, which limits the performance of the driven motor. Therefore, in this paper a quasi-Z source circuit is added to the input side of the two-stage matrix converter (TSMC) and its working principle has also been verified. In addition, the controller of the speed loop and current loop in the conventional vector control of a PMSM is a PID controller. The PID controller has the problem since its parameters are difficult to adjust and its anti-interference capability is limited. As a result, a port controlled dissipative Hamiltonian model (PCHD) of a PMSM is established. Thereafter a passivity-based controller based on the interconnection and damping assignment (IDA) of a QZMC-PMSM is designed, and the stability of the equilibrium point is theoretically verified. Simulation and experimental results show that the designed PBC control system of a PMSM based on a QZMC can make the PMSM run stably at the rated speed. In addition, the system has strong robustness, as well as good dynamic and static performances.

Steady-State Harmonic Domain Matrix-Based Modeling of Four-Quadrant EMU Line Converter

  • Wang, Hui;Wu, Mingli;Agelidis, Vassilios G.;Song, Kejian
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.572-579
    • /
    • 2014
  • As a non-linear time variant system, the four-quadrant line converter of an electric multiple unit (EMU) was expressed by linear time periodic functions near an operating point and modeled by a steady-state harmonic domain matrix. The components were then combined according to the circuit connection and relations of the feedback control loops to form a complete converter model. The proposed modeling method allows the study of the amplitude of harmonic impedances to explore harmonic coupling. Moreover, the proposed method helps provide a better design for the converter controllers, as well as solves the problem in coordination operation between the EMUs and the AC supply. On-site data from an actual $CRH_2$ high-speed train were used to validate the modeling principles presented in the paper.

The Speed Control for Direct Current Motors Using Matrix Converter Topology (매트릭스 컨버터 토폴로지를 이용한 직류전동기 속도제어)

  • Jeong, Bum-dong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.238-245
    • /
    • 2018
  • This paper proposes the applicability of matrix converter topology for the speed control of direct current motors. Matrix convertesr are divided into direct and indirect components. This paper utilizes an indirect matrix converter which is expected to be used widely because of making a variety of output side. The proposed converter has advantages which improves input current shape, has no large energy storage component causing short life. Simulation results are provided to verify effectiveness by comparing and analyzing features of the proposed and conventional topology. The proposed method shows similar performance for speed control, torque control, and load current control compared to a conventional method. Furthermore Harmonics are greatly reduced because the input current is controlled in a manner similar to sinusoidal wave by directly controlling switches at the rectifier stage.

DFIG Wind Power System with a DDPWM Controlled Matrix Converter

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.299-306
    • /
    • 2010
  • This paper proposes a new doubly-fed induction generator (DFIG) system using a matrix converter controlled by direct duty ratio pulse-width modulation (DDPWM) scheme. DDPWM is a recently proposed carrier based modulation strategy for matrix converters which employs a triangular carrier and voltage references in a voltage source inverter. By using DDPWM, the matrix converter can directly and effectively generate rotor voltages following the voltage references within the closed control loop. The operation of the proposed DFIG system was verified through computer simulation and experimental works with a hardware simulator of a wind power turbine, which was built using a motor-generator set with vector drive. The simulation and experimental results confirm that a matrix converter with a DDPWM modulation scheme can be effectively applied for a DFIG wind power system.

Implementation of Direct Torque Control Method using Matrix Converter Fed Induction Motor

  • Lee, Hong-Hee;Nguyen, Hoang M.;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.74-80
    • /
    • 2008
  • This paper develops a direct torque control method (DTC) using a matrix converter fed induction motor. The advantages of matrix converters are combined with the advantages of the DTC technique; under the constraint of the unity input power factor, the required voltage vectors are generated to implement the conventional DTC method of induction motor. The proposed DTC algorithm is applied to induction motors and the experimental results are given in steady-state and transient conditions, while the discussion about the trend of the DTC method using the MC is also carried out. Furthermore, the entire system of the matrix converter configuration using 7.5kW IGBT module is explained in detail.