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Abstract 

 

Because of the shortcomings of the PID controllers and traditional drive systems of permanent magnet synchronous motors 
(PMSMs), a PMSM passivity-based control (PBC) drive system based on a quasi-Z source matrix converter (QZMC) is proposed 
in this paper. The traditional matrix converter is a buck converter with a maximum voltage transmission ratio of only 0.866, 
which limits the performance of the driven motor. Therefore, in this paper a quasi-Z source circuit is added to the input side of 
the two-stage matrix converter (TSMC) and its working principle has also been verified. In addition, the controller of the speed 
loop and current loop in the conventional vector control of a PMSM is a PID controller. The PID controller has the problem since 
its parameters are difficult to adjust and its anti-interference capability is limited. As a result, a port controlled dissipative 
Hamiltonian model (PCHD) of a PMSM is established. Thereafter a passivity-based controller based on the interconnection and 
damping assignment (IDA) of a QZMC-PMSM is designed, and the stability of the equilibrium point is theoretically verified. 
Simulation and experimental results show that the designed PBC control system of a PMSM based on a QZMC can make the 
PMSM run stably at the rated speed. In addition, the system has strong robustness, as well as good dynamic and static performances. 
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I. INTRODUCTION 

Permanent Magnet Synchronous Motors (PMSMs) have 
the virtues of a simple structure, stable operation, small size 
and high efficiency. With the continuous improvement of 
materials and control technologies, PMSMs have been widely 
used in civil manufacturing, aerospace and military fields [1]. 
The conventional power electronic driving devices of a 
PMSM, such as DC-AC inverters and AC-DC-AC converters, 
have disadvantages such as low voltage transmission ratio, 
large intermediate DC capacitors, and the fact that they 
cannot be integrated [2]. 

As a kind of AC-AC inverter, the quasi-Z source indirect 
matrix converter is composed of a quasi-Z source circuit and 
a two-stage matrix converter (TSMC). There is no DC capacitor 
between the rectifier stage and the inverter stage of the two- 

stage matrix converter, which overcomes the shortcomings of 
the traditional AC-DC-AC converters, where DC capacitor 
cannot be integrated [3]. However, its maximum voltage 
transmission ratio is 0.866 [4]. According to the authors of 
[5], when the motor is driven, the three-phase stator voltage is 
lower than the rated voltage. As a result, the motor cannot 
work at the rated speed, which limits the speed regulation 
range of the PMSM. In addition, the low voltage is 
unfavorable for the PMSM startup, which can damage the 
motor when driving a heavy load [5]. 

In [6], the over-modulation method is used to improve the 
voltage transfer ratio of a TSMC. However, the low order 
harmonics of the output voltage and input current are 
introduced, and an LC filter needs to be added to the input 
side of the TSMC, which increases the cost. The quasi-Z 
source circuit can effectively improve the voltage utilization 
by inserting a through-vector, and there is no need to insert a 
dead zone commutation time. The authors of [7] analyzed 
various Z-source matrix converter topologies and noted that 
when an input current continuous type quasi-Z is added, an 
LC filter on the input side does not need to be added. The 
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authors of [8] modeled a Z-source matrix converter and 
verified its stability. Therefore, the quasi-Z source matrix 
converter (QZMC) combined with the quasi-Z source network 
and the TSMC has significant advantages, which has attracted 
a lot of attention from scholars in the motor drive field [9], 
[10]. PMSM control systems mostly use basic vector control 
and direct torque control methods [11]. Among them, the 
vector control can decouple the AC and DC components of 
the stator current, and realize the decoupling control of the 
magnetic field and the torque. Therefore, it has been widely 
used in the motor control. This method generally uses a PID 
regulator as the controller. However, a PMSM is a nonlinear, 
strongly coupled system, which is great impacted by the 
control effect when it is disturbed by external disturbances or 
motor parameters. In [12], model reference adaptive control 
is used to solve the problem of model robustness. However, 
establishing the model and the time constraint of online 
correction limit its application range. In [13], sliding mode 
control (SMC) is applied to a PMSM speed control system. In 
order to suppress the chattering phenomenon of SMC, the 
sliding mode approach law is improved in [14]. However, the 
time to get close to the sliding mode surface is longer. In [15], 
backstepping control is applied to PMSM control. The 
controller has global stability. However, there are some problems 
with this approach since the speed control has a static error 
and the overshoot is large. Therefore, some scholars have done 
research on the combination of adaptive and backstepping 
control [16], [17]. However, the time constraint problem of 
adaptive control has not been solved. 

Passivity-based control (PBC) is a non-linear feedback 
energy control method that uses the reactive component 
assignment on the system dissipative characteristic equation 
to ensure that the system energy follows a given energy 
function. Therefore, the system state variable can reach a 
given value. PBC has the advantages of a fast dynamic 
response, strong anti-interference capability, simple structure 
and easy implementation, and it has already been applied in 
PWM rectifier control [18]-[21]. 

This study proposes a PBC drive system for a PMSM 
based on a QZMC. This paper is organized as follows. 
Section II describes the overall structure of the designed 
system. Section III introduces the model and principle of a 
QZMC. The PBC controller is analyzed and designed in 
Section IV and Section V. Simulation and experimental results 
are presented in Section VI and Section VII to validate the 
proposed system. Finally, some conclusions are presented in 
Section VIII. 

 

II. OVERALL STRUCTURE OF A QZMC-PMSM  
PBC CONTROL SYSTEM 

Fig. 1 presents a structure diagram of the proposed 
passivity-based control system for the QZMC-PMSM. In this  

 
Fig. 1. Structure diagram of a passivity-based control system for 
the QZMC-PMSM. 
 

system, the rectifier stage modulation of the QZMC adopts 
the SVPWM modulation method [22], which inserts the 
through-vector, and obtains 7 PWM pulses gst and g1~g6 from 
the AC power supply phase voltages ua, ub, uc and the 
through-duty D. Among them, gst is a through pulse, which is 
used to control the through and non-through state switchings 
of the quasi-Z source network. As a result, the quasi-Z source 
network outputs the boosted voltages u'a, u'b, u'c; and g1~g6 
are used to control the rectifier stage switching action. 

The PID controller used in traditional vector control has 
the disadvantages of difficult parameter adjustment, poor 
dynamic performance and poor robustness. Therefore, the 
PMSM controller in this paper uses a nonlinear PBC controller 
based on interconnection and damping assignment (IDA) [23]. 
The output obtained by the passivity-based controller is 
supplied to the inverter stage modulation module to control 
the PMSM. The PMSM passivity-based controller outputs the 
dq axis stator voltages ud and uq. The three-phase stator 
voltages uA, uB and uC are obtained from the anti-PARK abc 
coordinates. The inverter stage modulates uA, uB and uC by 
the SVPWM modulation algorithm, and outputs six PWM 
pulses g7~g12 are used to control the inverter stage switching 
action. 

 

III. WORKING PRINCIPLE AND MODELING OF A 

QZMC 

A. Topology of the Quasi-Z Source Matrix Converter 

The quasi-Z source matrix converter topology is shown in 
Fig. 2. This topology consists of three identical current- 
continuous quasi-Z source networks and a two-stage matrix 
converter. The traditional matrix converter has a maximum 
voltage gain of only 0.866, which limits the speed range of 
the driven motor. The boosting characteristic of the quasi-Z 
source circuit increases the speed range of the motor. This 
section demonstrates the principle of the quasi-Z source 
circuit. 

B. Boost Principle of the Quasi-Z source Circuit 

When the Z source circuit is analyzed, the inverter stage of 
the two-stage matrix converter can be equivalent to a two-port  
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Fig. 2. Topology of the quasi-Z source matrix converter. 

 

 
(a) 

 
(b) 

Fig. 3. Equivalent circuit of a quasi-Z source matrix converter. (a) 
Non-through state equivalent circuit. (b) Through state equivalent 
circuit.  
 
network. According to the symmetrical structure of the 
three-phase quasi-Z source network: 

       (1) 

Fig. 3 is an equivalent circuit of a quasi-Z source matrix 
converter. When the QZMC is operating in the non-through 
state, the switch Sx is turned on, and the equivalent circuit is 
shown in Fig. 3(a). The quasi-Z source network is three- 
phase symmetrical, and phase a is taken as an example to 
derive the boosting principle. The circuit is now satisfied: 

           (2) 

Where , and , are the voltages across 

the inductors La1 and La2 and the capacitors Ca1 and Ca2, 

respectively. 
When the quasi-Z source matrix converter operates in the 

through state, the switch Sx is turned off, and the equivalent 
circuit is shown in Fig. 3(b). The circuit is now satisfied: 

                (3) 

According to the volt-second principle, the average value 
of the voltage across the inductor in one cycle during a 
switching cycle Ts should be zero, which is obtained by Eqns. 
(2)-(3): 

    (4) 

The following can be obtained by Eq. (4): 

                (5) 

The boost factor B is: 

                  (6) 

It can be seen from Eq. (6) that the boosting factor B can 
be changed by changing the through-duty ratio D. Since 0 < 
D < 0.5, the boosting factor B > 1. Thus, the voltage transfer 
ratio can be made bigger than 0.866. 

 

IV. PMSM BASED ON A PCHD MODEL AND  
PBC CONTROL 

A. Establishment of a PCHD Model of a PMSM 

A port dissipative Hamiltonian model in the form of a 
system state equation [24] is given by Eq. (7). 

  (7) 

Where x is the state variable, x∈Rn; u and y are the input 

and output variables, u and y∈Rm; R(x) is the system port 

damping matrix, which satisfies R(x)=−RT(x)≥0; J(x) is the 
internal interconnect matrix of the system, which satisfies 
J(x)=−JT(x); H(x) is the system energy storage function; and 
f(x) is the state variable function. g(x) is the input variable 
coefficient function. 

The mathematical model of a PMSM in the dq coordinate 
system obtained by a PARK transformation is: 

       (8) 

where ud and uq are the stator voltage d-q axis components, 
and id and iq are the stator current d-q axis components. R is 
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the stator resistance. np is the number of rotor pole pairs. Ld 
and Lq are the stator inductances in the dq coordinate system. 
 is the rotor mechanical speed. f is the flux linkage of the 
permanent magnet. TL is the load torque. 

Define the state variable x, input variable u, and output 
variable y of the PMSM as: 

             (9) 

,       (10) 

D is a diagonal matrix, D = diag {Ld, Lq, J}. 
The energy storage function of the PMSM system can be 

expressed as: 

    (11) 

The dq mathematical model of PMSM can be expressed in 
the form of (7) PCHD: 

       (12) 

       (13) 

where: 

 

,  

B. IDA-PBC Principle based on the PCHD Model 

In order to stabilize the PMSM system at the equilibrium 
point x*, a closed-loop expected energy function Hd(x) is 
constructed by feedback control so that Hd(x) it at its 
minimum at x*. At the same time, the feedback control law 

u=(x) is designed. Thus, the closed-loop system can be 
expressed as: 

           (14) 

Jd(x) and Rd(x) are the desired interconnect matrix and 
damping matrix, respectively. They satisfy: 

 

If the designed feedback law u=(x), Ra(x), Ja(x) and K(x) 
can satisfy [24]: 

 (15) 

the following is obtained: 

   (16) 

The closed loop system is a PCHD system, and x* is a 
stable balance point of the system. Ha(x) is the energy 
function to be determined by the feedback system. 

 

V. STABILITY ANALYSIS AND CONTROLLER  
DESIGN 

A. Stability Analysis 

The goal of the PMSM drive system is to achieve the 

tracking of a desired speed *. In order to satisfy the 
maximum torque control, the basic idea of the vector control 
is to use id=0 control. If the load is known at this time, the 
desired balance point is [24]: 

    (17) 

Take the expected Hamiltonian function as [24]: 

           (18) 

From Eq. (16), the following can be obtained: 

 (19) 

When ,  and , Eq. (16) 

can be verified by Eq. (19). Therefore, the passivity-based 
control system in this paper is progressively stable near the 
equilibrium point. 

B. Controller Design 

It can be assumed that: 

  (20) 

where: J12, J13 and J23, and r1 and r2 are the interconnection 
and damping parameters to be determined respectively [24]. 
By substituting equation (20) into equation (15), the 
following can be obtained: 

(21) 

By substituting Jd(x), Rd(x), Ja(x), Ra(x), g(x)(x) and x* 
into equation (21), the following can be obtained: 

        (22) 

To ensure that Eq. (22) is always established, take  
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TABLE I 
 PARAMETERS OF THE PMSM AND QUASI-Z SOURCE 

Parameters Values Parameters  Values 
Vr 311 V J 0.0008 kg· m2 
fi 50 Hz R 0.958 Ω 
φf 0.183 Wb Ls 5.25 mH 
ir 6.5 A np 4 
ωr 1600 r/min Lz 0.05 mH 
Tr 14.8 N·m Cz 50 μF 

 

 
Fig. 4. Waveforms of uq with different values of r. 
 

,  and . k is a free 

parameter whose value does not affect system stability. 
Substituting J23, J13 and J12 into Eq. (21), it becomes 

possible to derive the dq axis output voltage. The control law 
of passivity-based control is: 

 (23) 

 

VI. SIMULATIONS 

In order to verify the feasibility and superiority of a 
quasi-Z source matrix converter (QZMC) applied in a PMSM 
passivity-based control (PBC) drive system, the system is 
simulated in MATLAB/Simulink software. The parameters of 
the PMSM and quasi-Z source are shown in Table I. 

In Table I, Vr, ir, ωr and Tr are the rated voltage, current, 
rotating speed and torque of the PMSM, respectively. Lz and 
Cz are the inductance and capacitance values of the Z source 
network. 

In order to study the influence of injection damping 
r(r1=r2=r) on the control effect, this paper changes the 
magnitude of r and observes the output q-axis voltage uq, 
which can be obtained as shown in the Fig. 4. 

It can be seen from Fig. 4 that when r is increased from 0 
to 2, the overshoot and the time to reach stability gradually 
decrease. After exceeding 2, these values increase again. The 
curve in Fig. 4 indicates that the injection damping size  

 
(a) 

 
(b) 

Fig. 5. Simulation results of a quasi-Z source voltage boost. (a) 
A-phase output voltage of an AC power supply. (b) A-phase 
output voltage of a quasi-Z source network QZMC-PMSM. 
 
affects the overshoot and stability time. When r is around 2, 
the response curve is almost ideal. Thus, this paper uses r=2. 
The parameter k(k=100) is a free parameter that does not 
affect the stability of the system. Therefore, in this paper 
r=r1=r2=2, k=100. 

A. Voltage Boost Situation 

In order to verify whether the boosting capability of the 
quasi-Z source network satisfies the formula B=1/(1-2D), the 
phase voltage of the three-phase AC power supply is set to 
311V, and the through-duty D is set to 0.1. Theoretically, the 
boost factor B is 1.25, and Z-source output phase voltage 
should be 388.75V. 

Fig. 5 shows simulation results of the boosting capability 
of a quasi-Z source. The phase voltage obtained by the three- 
phase power supply and the output phase voltage obtained by 
the quasi-Z source boosting are shown in Fig. 5(a) and Fig. 
5(b). It can be seen from these figures that the a-phase output 
voltage of the quasi-Z source network is indeed 388V, which 
satisfies the boosting formula. 

Fig. 6(a) and Fig. 6(b) show the DC bus voltage of the 
TSMC and QZMC, respectively. Fig. 6(c) and Fig. 6(d) 
show the line voltages of the TSMC and QZMC outputs, 
respectively. It can be seen from Fig. 6(a), 6(b), 6(c) and 6(d) 
that when the quasi-Z source is added to the TSMC, the DC 
bus voltage and the output line voltage are both increased, 
and the QZMC voltage transmission ratio is about 1. With a 
voltage transfer ratio of 1, it can be ensured that the PMSM 
operates at the rated voltage when it is driven, which is 
important for good operation of the PMSM. 

B. PMSM Control Result of PID and PBC 

1) Constant Speed: Set the phase voltage of the three-phase 
input to 220V, and boost the PMSM stator voltage to 220V 
through the quasi-Z network boost. Simulate the QZMC- 
PMSM system speed when the load is known. The simulation 
results are shown in Fig. 7(a). The speed is 1000r/min and the 
load is 5N·m. It can be seen from this figure that the PMSM  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Simulation result of an MC voltage boost. (a) DC bus 
voltage of the TSMC. (b) DC bus voltage of the QZMC. (c) 
Output line voltage of the TSMC. (d) Output line voltage of the 
QZMC. 
 
can reach and stabilize at a given speed under the two control 
methods of PBC and PID in the inverter stage. When 
compared with the PID control, the PBC control of this paper 
can make the overshoot 0, and the dynamic response speed is 
improved. 

2) Given Speed Changes: In order to verify the speed 
regulation capability of the QZMC-PMSM system, the load is 
kept constant at 5 N·m. When the motor is operated at 0~0.2 s, 
the rated motor speed is 1600 r/min, and the speed is reduced 
to 1000 r/min at 0.2 s. Simulation results are shown in Fig. 
7(b). It can be seen from this figure that the system under the 
control of the PBC can track a given speed without overshoot. 
It can also be seen that the system can adjust the speed faster 
and that the dynamic performance of the system is better 
when the speed is changed. 

3) Load Changes: The system was simulated under a load 
disturbance and the PMSM speed was set to 600 r/min. From 
0 to 0.2 s, the load is 5 N·m, and at 0.2 s, the load abruptly 
changes to 10 N·m. The speed simulation is shown in Fig. 7(c).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Comparison of PID and PBC simulation results. (a) Speed 
curve when the speed is constant. (b) Speed curve when the 
speed changes. (c) Speed curve comparison when the load 
changes. (d) Torque curve comparison when the load changes. 

 
As can be seen from this figure, the PBC control speed curve 
is over-adjusted. However, it can be quickly stabilized at a 
given speed. When the load changes at 0.2 s, the PBC control 
can return to a given speed faster than the PID control 
method. In addition, the system is more robust. 

Fig. 7(d) shows an electromagnetic torque curve under the 
two control methods of the PID and PBC when the load 
changes. As can be seen from the Fig. 7(d), the electromagnetic 
torque response of the PBC is better than that of the PID 
when the load changes. 

 

VII. EXPERIMENT 

In order to further verify the performance of the designed 
PMSM drive system, an experiment was carried out on the 
experimental platform shown in Fig. 8. The experimental 
parameters are consistent with the simulation parameters. The  
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Fig. 8. Photo of experimental platform. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 9. Boost capacity experiments of the QZMC. (a) A-phase 
input voltage from the gird. (b) Quasi-Z source a-phase output 
voltage. (c) DC bus voltage. (d) Output line voltage of the QZMC. 
 
control was carried out using a XC3S1800A digital signal 
processor (DSP). The bidirectional switch of the QZMC is a 
SK60GM123, and it is driven by a drive module 6SD106EI. 

A. Boost Capacity and Constant Speed Control 

In the matrix converter experiment, the input AC voltage is 
a 220V/50Hz grid voltage. Fig. 9(a) is an a-phase input  

 
Fig. 10. Speed comparison when run at a constant speed. 

 

 
Fig. 11. Speed comparison when the speed changes. 

 

 
Fig. 12. Speed comparison when the load changes. 
 
voltage waveform. Fig. 9(b) is the quasi-Z source a-phase 
output voltage. Fig. 9(c) is the DC bus voltage. Fig. 9(d) is 
the output line voltage UAB. By analyzing these experimental 
results, the same conclusion reached in part A in Section VI 
are obtained. After adding the quasi-Z source to the TSMC, 
the DC bus voltage and the output line voltage are both 
increased, and the QZMC voltage transmission ratio can 
reach 1. Figs.10-12 show speed curves of the PMSM using 
the PBC and PID methods. The hardware experiment results 
show that the speed overshoot is small and the dynamic 
response speed is improved under the control of the PBC. 

B. Variable Speed Control and Load Disturbance 

Fig. 10 shows a comparison of experiment result when the 
PMSM runs at a constant speed under the PBC and PID 
methods. When the speed and load of the PMSM change, 
experimental waveforms of the QZMC-PMSM passivity- 
based control system designed in this paper and the 
traditional PID control are shown in Fig. 11 and Fig. 12, 
respectively. It can be seen from these waveform that the 
system with the PBC control has a stronger anti-interference 
capability and improved dynamic performance. 
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VIII. CONCLUSION 

In this paper, a passivity-based control (PBC) system for 
quasi-Z source matrix converter (QZMC)-permanent magnet 
synchronous motors (PMSMs) is designed. A current- 
continuous quasi-Z-source two-stage matrix converter with 
boosting capability is used to replace the traditional PWM 
converter. A PCHD-based nonlinear passivity-based controller 
is designed for PMSMs, and the stability of the control 
system is theoretically verified. Finally, simulations and 
experiments were carried out on MATLAB and an experimental 
platform. Through the analysis and experiment in this paper, 
the following conclusions are obtained. 

1) The through-vector is inserted into the rectifier stage 
through the quasi-Z source. Thus, the output voltage of the 
quasi-Z source is greater than the input voltage, which 
ensures that the voltage transmission ratio of the QZMC can 
reach or even exceed 1. This in turn, improves the speed 
regulation range and working performance of the driven 
PMSM. 

2) When compared with the traditional PID control, the 
passivity-based control QZMC-PMSM drive system proposed 
in this paper has better dynamic and static performance and 
stronger anti-interference capability. 
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