• Title/Summary/Keyword: Matrix Vector

Search Result 764, Processing Time 0.031 seconds

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.

Gaussian noise addition approaches for ensemble optimal interpolation implementation in a distributed hydrological model

  • Manoj Khaniya;Yasuto Tachikawa;Kodai Yamamoto;Takahiro Sayama;Sunmin Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.25-25
    • /
    • 2023
  • The ensemble optimal interpolation (EnOI) scheme is a sub-optimal alternative to the ensemble Kalman filter (EnKF) with a reduced computational demand making it potentially more suitable for operational applications. Since only one model is integrated forward instead of an ensemble of model realizations, online estimation of the background error covariance matrix is not possible in the EnOI scheme. In this study, we investigate two Gaussian noise based ensemble generation strategies to produce dynamic covariance matrices for assimilation of water level observations into a distributed hydrological model. In the first approach, spatially correlated noise, sampled from a normal distribution with a fixed fractional error parameter (which controls its standard deviation), is added to the model forecast state vector to prepare the ensembles. In the second method, we use an adaptive error estimation technique based on the innovation diagnostics to estimate this error parameter within the assimilation framework. The results from a real and a set of synthetic experiments indicate that the EnOI scheme can provide better results when an optimal EnKF is not identified, but performs worse than the ensemble filter when the true error characteristics are known. Furthermore, while the adaptive approach is able to reduce the sensitivity to the fractional error parameter affecting the first (non-adaptive) approach, results are usually worse at ungauged locations with the former.

  • PDF

Optimal Polarization Combination Analysis for SAR Image-Based Hydrographic Detection (SAR 영상 기반 수체탐지를 위한 최적 편파 조합 분석)

  • Sungwoo Lee;Wanyub Kim;Seongkeun Cho;Minha Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.359-359
    • /
    • 2023
  • 최근 기후변화로 인한 홍수 및 가뭄과 같은 자연재해가 증가함에 따라 이를 선제적으로 탐지 및 예방할 수 있는 해결책에 대한 필요성이 증가하고 있다. 이러한 수재해를 예방하기 위해서 하천, 저수지 등 가용수자원의 지속적인 모니터링은 필수적이다. SAR 위성 영상의 경우 주야간 및 기상상황에 상관없이 지속적인 수체 탐지가 가능하다. 일반적으로 SAR 기반 수체 탐지 시 송수신 방향이 동일한 편파(co-polarized) 영상을 사용한다. 하지만 co-polarized 영상의 경우 바람 및 강우에 민감하게 반응하여 수체 미탐지의 가능성이 존재한다. 한편 송수신 방향이 서로 다른 편파(cross-polarized) 영상은 강우 및 바람의 영향에 민감하지 않지만 식생에 민감하게 반응하여 수체의 오탐지율이 높다는 단점이 존재한다. 이에 SAR 영상의 편파 특성에 따라 수체 탐지의 정확도 차이가 발생하여 최적의 편파 영상 조합을 구성하는 것이 중요하다. 본 연구에서는 Sentinel-1 SAR 위성의 VV, VH, VV+VH 편파 영상과 머신러닝 알고리즘 중 하나인 SVM (support vector machine)을 활용하여 수체탐지를 수행하였다. 편파 영상 조합별 수체 탐지 결과의 검증을 위하여 혼동행렬 (confusion matrix) 기반 평가지수를 사용하였다. 각각의 수체탐지 결과의 비교 및 분석을 통하여 SAR 기반 수체 탐지를 위한 최적의 밴드 조합을 도출하였다. 본 연구결과를 바탕으로 차후 높은 시공간 해상도를 가진 SAR 영상의 활용이 가능하다면 수재해 및 수자원 관리의 효율성을 높일 수 있을 것으로 기대된다.

  • PDF

Duality of Paranormed Spaces of Matrices Defining Linear Operators from 𝑙p into 𝑙q

  • Kamonrat Kamjornkittikoon
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.235-250
    • /
    • 2023
  • Let 1 ≤ p, q < ∞ be fixed, and let R = [rjk] be an infinite scalar matrix such that 1 ≤ rjk < ∞ and supj,k rjk < ∞. Let 𝓑(𝑙p, 𝑙q) be the set of all bounded linear operator from 𝑙p into 𝑙q. For a fixed Banach algebra 𝐁 with identity, we define a new vector space SRp,q(𝐁) of infinite matrices over 𝐁 and a paranorm G on SRp,q(𝐁) as follows: let $$S^R_{p,q}({\mathbf{B}})=\{A:A^{[R]}{\in}{\mathcal{B}}(l_p,l_q)\}$$ and $G(A)={\parallel}A^{[R]}{\parallel}^{\frac{1}{M}}_{p,q}$, where $A^{[R]}=[{\parallel}a_{jk}{\parallel}^{r_{jk}}]$ and M = max{1, supj,k rjk}. The existance of SRp,q(𝐁) equipped with the paranorm G(·) including its completeness are studied. We also provide characterizations of β -dual of the paranormed space.

Thrombospondins Mediate the Adhesion of Osteoblast to Extracelluar Matrix

  • Lim, Dong-Jin;Bae, In-Ho;Jeong, Byung-Chul;Kim, Sun-Hun;Park, Bae-Keun;Kang, In-Chul;Lee, Shee-Eun;Song, Sang-Hun;Koh, Jeong-Tae
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.105-111
    • /
    • 2008
  • Thrombospondins (TSP-1, TSP-2) are secretory extracellular glycoproteins that are involved in a variety of physiological processes such as tumor cell adhesion, invasion, and metastasis. The present study was undertaken to elucidate the involvement of thrombospondins in the adhesion of osteoblast-like cells using the TSP-1 or TSP-2 antisense MG63 and MC3T3-E1 cell lines. For downregulation of TSPs expression, we prepared antisense constructs for TSP-1 and TSP-2 using the pREP4 an episomal mammalian expression vector, which be able to produce the specific antisense oligonucleotides around chromosome. MG63 and MC3T3-E1 osteoblast-like cells were transfected with the antisense constructs and nonliposomal Fugene 6, and then selected under hygromycin B (50 ${\mu}g/ml$) treatment for 2 weeks. Western blot analysis revealed that expression of the TSP proteins was downregulated in the antisense cell lines. The cell adhesion assay showed that adhesive properties of TSP-1 and TSP-2 antisense MG63 cells on the polystyrene culture plate were reduced to 17% and 21% of the control cells, respectively, and those of the TSP-1 and TSP-2 antisense MC3T3-E1 cells also decreased to 19% and 27% of control, respectively. Adhesion of TSP-1 and TSP-2 antisense MC3T3-E1 cells on Type I collagen-coated culture plate decreased to 27% and 76%, respectively. These results indicate that TSP-1 and TSP-2 proteins may have an important role in adhesion of osteoblast-like cells to extracellular matrix.

Face Recognition Using Local Statistics of Gradients and Correlations (그래디언트와 상관관계의 국부통계를 이용한 얼굴 인식)

  • Ju, Yingai;So, Hyun-Joo;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.19-29
    • /
    • 2011
  • Until now, many face recognition methods have been proposed, most of them use a 1-dimensional feature vector which is vectorized the input image without feature extraction process or input image itself is used as a feature matrix. It is known that the face recognition methods using raw image yield deteriorated performance in databases whose have severe illumination changes. In this paper, we propose a face recognition method using local statistics of gradients and correlations which are good for illumination changes. BDIP (block difference of inverse probabilities) is chosen as a local statistics of gradients and two types of BVLC (block variation of local correlation coefficients) is chosen as local statistics of correlations. When a input image enters the system, it extracts the BDIP, BVLC1 and BVLC2 feature images, fuses them, obtaining feature matrix by $(2D)^2$ PCA transformation, and classifies it with training feature matrix by nearest classifier. From experiment results of four face databases, FERET, Weizmann, Yale B, Yale, we can see that the proposed method is more reliable than other six methods in lighting and facial expression.

A Study on the RFID Biometrics System Based on Hippocampal Learning Algorithm Using NMF and LDA Mixture Feature Extraction (NMF와 LDA 혼합 특징추출을 이용한 해마 학습기반 RFID 생체 인증 시스템에 관한 연구)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.46-54
    • /
    • 2006
  • Recently, the important of a personal identification is increasing according to expansion using each on-line commercial transaction and personal ID-card. Although a personal ID-card embedded RFID(Radio Frequency Identification) tag is gradually increased, the way for a person's identification is deficiency. So we need automatic methods. Because RFID tag is vary small storage capacity of memory, it needs effective feature extraction method to store personal biometrics information. We need new recognition method to compare each feature. In this paper, we studied the face verification system using Hippocampal neuron modeling algorithm which can remodel the hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature vector of the face images very fast. and construct the optimized feature each image. The system is composed of two parts mainly. One is feature extraction using NMF(Non-negative Matrix Factorization) and LDA(Linear Discriminants Analysis) mixture algorithm and the other is hippocampal neuron modeling and recognition simulation experiments confirm the each recognition rate, that are face changes, pose changes and low-level quality image. The results of experiments, we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to the existing method.

Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis (GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용)

  • Lee Kiwon;Jeon So-Hee;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.121-133
    • /
    • 2005
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of the useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program based on GLCM algorithm is newly implemented. As well, texture imaging modules for GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV Texture imaging parameters, it composed of six types of second order texture functions such as Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality in GLCM/GLDV, two direction modes such as Omni-mode and Circular mode newly implemented in this program are provided with basic eight-direction mode. Omni-mode is to compute all direction to avoid directionality complexity in the practical level, and circular direction is to compute texture parameters by circular direction surrounding a target pixel in a kernel. At the second phase of this study, some case studies with artificial image and actual satellite imagery are carried out to analyze texture images in different parameters and modes by correlation matrix analysis. It is concluded that selection of texture parameters and modes is the critical issues in an application based on texture image fusion.

Affective Representation of Behavioral and Physiological Responses to Emotional Videos using Wearable Devices (웨어러블 기구를 이용한 영상 자극에 대한 행동 및 생리적 정서 표상)

  • Inik Kim;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.1
    • /
    • pp.3-12
    • /
    • 2024
  • This study examined affective representation by analyzing physiological responses measured using wearable devices and affective ratings in response to emotional videos. To achieve this aim, a published dataset was reanalyzed using multidimensional scaling to demonstrate affective representation in two dimensions. Cross-participant classification was also conducted to identify the consistency of emotional responses across participants. The accuracy and misclassification in each emotional condition were described by exploring the confusion matrix derived from the classification analysis. Multidimensional scaling revealed that the represented objects, namely, emotional videos, were positioned along the rated valence and arousal vectors, supporting the core affect theory (Russell, 1980). Vector fittings of physiological responses also showed the associations between heart rate acceleration and low arousal, increased heart rate variability and negative and high arousal, and increased electrodermal activity and negative and low arousal. Using the data of behavioral and physiological responses across participants, the classification results revealed that emotional videos were more accurately classified than the chance level of classification. The confusion matrix showed that awe, enthusiasm, and liking, which were categorized as positive, low arousal emotions in this study, were less accurately classified than the other emotions and were misclassified for each other. Through multivariate analyses, this study confirms the core affect theory using physiological responses measured through wearable devices and affective ratings in response to emotional videos.

Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

  • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-92
    • /
    • 2014
  • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.