• Title/Summary/Keyword: Matrix Star Graphs

Search Result 5, Processing Time 0.021 seconds

One-to-One Mapping Algorithm between Matrix Star Graphs and Half Pancake Graphs (행렬스타 그래프와 하프 팬케익 그래프 사이의 일대일 사상 알고리즘)

  • Kim, Jong-Seok;Yoo, Nam-Hyun;Lee, Hyeong-Ok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.430-436
    • /
    • 2014
  • Matrix-star and Half-Pancake graphs are modified versions of Star graphs, and has some good characteristics such as node symmetry and fault tolerance. This paper analyzes embedding between Matrix-star and Half-Pancake graphs. As a result, Matrix-star graphs $MS_{2,n}$ can be embedded into Half-Pancake graphs $HP_{2n}$ with dilation 5 and expansion 1. Also, Half Pancake Graphs, $HP_{2n}$ can be embedded into Matrix Star Graphs, $MS_{2,n}$ with the expansion cost, O(n). This result shows that algorithms developed from Star Graphs can be applied at Half Pancake Graphs with additional constant cost because Star Graphs, $S_n$ is a part graph of Matrix Star Graphs, $MS_{2,n}$.

Embedding Analysis Among the Matrix-star, Pancake, and RFM Graphs (행렬-스타그래프와 팬케익그래프, RFM그래프 사이의 임베딩 분석)

  • Lee Hyeong-Ok;Jun Young-Cook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1173-1183
    • /
    • 2006
  • Matrix-star, Pancake, and RFM graphs have such a good property of Star graph and a lower network cost than Hypercube. Matrix-star graph has Star graph as a basic module and the node symmetry, the maximum fault tolerance, and the hierarchical decomposition property. Also it is an interconnection network that improves the network cost against Star graph. In this paper, we propose a method to embed among Matrix-star Pancake, and RFM graphs using the edge definition of graphs. We prove that Matrix-star $MS_{2,n}$ can be embedded into Pancake $P_{2n}$ with dilation 4, expansion 1, and $RFM_{n}$ graphs can be embedded into Pancake $P_{n}$ with dilation 2. Also, we show that Matrix-star $MS_{2,n}$ can be embedded into the $RFM_{2n}$ with average dilation 3.

  • PDF

Matrix Star Graphs: A New Interconnection Networks Improving the Network Cost of Star Graphs (행렬 스타 그래프: 스타 그래프의 망 비용을 개선한 새로운 상호 연결망)

  • 이형옥;최정임형석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.467-470
    • /
    • 1998
  • In this paper, we propose a matrix star graph which improves the network cost of the well-known star grah as an interconnection network. We analyze its characteristics in terms of the network parameters, such as degree, scalability, routing, and diameter. The proposed matrix star graph MS2,n has the half degrees of a star graph S2n with the same number of nodes and is an interconnection network with the properties of node symmetry, maximum fault tolerance, and recursive structure. In network cost, a matrix star graph MS2,n and a star graph S2n are about 3.5n2 and 6n2 respectively which means that the former has a better value by a certain constant than the latter has.

  • PDF

An Algorithm for One-to-One Mapping Matrix-star Graph into Transposition Graph (행렬-스타 그래프를 전위 그래프에 일-대-일 사상하는 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1110-1115
    • /
    • 2014
  • The matrix-star and the transposition graphs are considered as star graph variants that have various merits in graph theory such as node symmetry, fault tolerance, recursive scalability, etc. This paper describes an one-to-one mapping algorithm from a matrix-star graph to a transposition graph using adjacent properties in graph theory. The result show that a matrix-star graph $MS_{2,n}$ can be embedded in a transposition graph $T_{2n}$ with dilation n or less and average dilation 2 or less.

Matrix-Star Graphs : A New Interconnection Network Based on Matrix Operation (행렬-스타그래프 : 행렬연산에 기반한 새로운 상호 연결망)

  • Lee, Hyeong-Ok;Im, Hyeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.4
    • /
    • pp.389-405
    • /
    • 1999
  • 본 논문에서는 상호 연결망의 노드를 행렬로 표현하고 행렬연산을 이용하여 에지를 정의한 새로운 상호 연결망으로 행렬-스타 그래프를 제안한다. 행렬-스타 그래프는 널리 알려진 스타 그래프를 일반화한 그래프이다. 먼저, 행렬-스타 그래프의 노드를 2 $\times$ n 행렬로 표현한 행렬-스타 그래프 MS2,n 에 대하여 주요 망 척도인 분지수, 연결도, 확장성, 대칭성, 리우팅 ,지름 방송등을 분석한다. 다음으로, 행렬-스타 그래프 MS2,n의 노드를 2차원과 3차원으로 일반화한 행렬-스타 그래크 MSk,n과 MS k,n,p를 정의하고 행렬-스타그래프 MSk,n,p 의 라우팅 알고리즘과 지름을 분석한다. 상호연결망의 중요 망 척도중 하나는 망 비용이고 상호연결망의 망 비용은 그 연결망의 분지수와 지름의 곱으로 정의된다. star 그래프는 다른 상호 연결망보다 작은 망 비용을 갖는다. 최근에 제안된 Macro-Star 그래픈 star 그래프에 비해 상대적으로 망 비용이 작은 값을 갖는 연결망이다. (n2)!개의 노드를 갖는 행렬-스타 그래프 MSk,k,k(k={{{{ `^{ 3} SQRT { n$^2$} }}}} )와 ((n-1)2 + 1)!개의 노드를 갖는 Macro-Star 그래프 MS(n-1, n-1)의 망 비용은 행렬-스타그래프 MSk,k,k(k={{{{ `^{ 3} SQRT { n$^2$} }}}})는 O(n2,7)이고, Macro-Star 그래프 MS(n-1 , n-1)은 O(n3) 이다. 이는 행렬-스타 그래프가 스타 그래프와 Macro-Star 그래프보다 망비용이 우수함을 의미한다.