• 제목/요약/키워드: Matrix Metalloproteinases-3 (MMP3)

검색결과 160건 처리시간 0.026초

Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy

  • Yadav, Lalita;Puri, Naveen;Rastogi, Varun;Satpute, Pranali;Ahmad, Riyaz;Kaur, Geetpriya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1085-1091
    • /
    • 2014
  • Matrix metalloproteinases (MMPs) are a family of zinc dependent extracellular matrix (ECM) remodelling endopeptidases having the ability to degrade almost all components of extracellular matrix and implicated in various physiological as well as pathological processes. Carcinogenesis is a multistage process in which alteration of the microenvironment is required for conversion of normal tissue to a tumour. Extracellular matrix remodelling proteinases such as MMPs are principal mediators of alterations observed in the microenvironment during carcinogenesis and according to recent concepts not only have roles in invasion or late stages of cancer but also in regulating initial steps of carcinogenesis in a favourable or unfavourable manner. Establishment of relationships between MMP overproduction and cancer progression has stimulated the development of inhibitors that block proteolytic activity of these enzymes. In this review we discuss the MMP general structure, classification, regulation roles in relation to hallmarks of cancer and as targets for therapeutic intervention.

Population genetic variations of the matrix metalloproteinases-3 gene revealed hypoxia adaptation in domesticated yaks (Bos grunniens)

  • Ding, Xuezhi;Yang, Chao;Bao, Pengjia;Wu, Xiaoyun;Pei, Jie;Yan, Ping;Guo, Xian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1801-1808
    • /
    • 2019
  • Objective: As an iconic symbol of Qinghai-Tibetan Plateau and of high altitude, yak are subjected to hypoxic conditions that challenge aerobic metabolism. Matrix metalloproteinases-3 (MMP3) is assumed to be a key target gene of hypoxia-inducible factor-$1{\alpha}$ that function as a master regulator of the cellular response to hypoxia. Therefore, the aim of this investigation was to identify the DNA polymorphism of MMP3 gene in domestic yak and to explore its possible association with high-altitude adaptation. Methods: The single-nucleotide polymorphisms (SNPs) genotyping and mutations scanning at the MMP3 locus were conducted in total of 344 individuals from four domestic Chinese yak breeds resident at different altitudes on the Qinghai-Tibetan Plateau, using high-resolution melting analysis and DNA sequencing techniques. Results: The novel of SNPs rs2381 $A{\rightarrow}G$ and rs4331 $C{\rightarrow}G$ were identified in intron V and intron VII of MMP3, respectively. Frequencies of the GG genotype and the G allele of SNP rs2381 $A{\rightarrow}G$ observed in high-altitude Pali yak were significantly higher than that of the other yak breeds resident at middle or low altitude (p<0.01). No significant difference was mapped for SNP rs4331 $C{\rightarrow}G$ in the yak population (p>0.05). Haplotype GC was the dominant among the 4 yak breeds, and Pearson correlation analysis showed that the frequencies of GC was significantly lower in Ganan (GN), Datong (DT), and Tianzhu white yaks (TZ) compared with Pali (PL) yak. The two SNPs were in moderate linkage disequilibrium in high-altitude yaks (PL) but not in middle-altitude (GN, DT) and low-altitude (TZ) yaks. Conclusion: These results indicate that MMP3 may have been subjected to positive selection in yak, especially that the SNP rs2381 $A{\rightarrow}G$ mutation and GC haplotypes might contribute to adaptation for yak in high-altitude environments.

Role of Matrix Metalloproteinases in Degenerative Lumbar Disc; Molecular and Immunohistochemical Study

  • Ryu, Kyeong-Sik;Cho, Sung-Jin;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • 제40권5호
    • /
    • pp.363-368
    • /
    • 2006
  • Objective : Little is known about the comprehensive molecular and biological mechanism on the development of the degeneration of the intervertebral disc. Many kinds of matrix metalloproteinase[MMP] initiate the degradation of the extracellular matrix including several kinds of collagens and proteoglycans. We compared molecular and immunohistochemical features of degenerated intervertebral disc and normal counterparts in order to investigate the role of MMP-1, 2, 3, 9. Methods : We have evaluated MMP-1, 2, 3, 9 expression in 30 surgically resected lumbar disc from degenerative disc disease patients and 5 normal control cases. RT-PCR[reverse transcriptase-polymerase chain reaction] and immunohistochemistry were performed. Results : By RT-PCR, normal tissue samples showed merely scant expression of MMP-1, 2, 3, 9 mRNA, but degenerated disc samples revealed more pronounced expression. mRNA amplifications were detected in 60%, 63.3%, 70%, 53.3% cases By immunohistochemistry, normal tissue samples showed minimal protein expression of MMP-1, 2, 3, 9, but degenerated disc samples revealed more pronounced expression. Protein expressions were detected in 73.3%, 63.3%, 76.7%, 63.3% cases. Both the mRNA amplification and protein overexpression rates were significantly higher in degenerated disc than in the normal tissue. Concordance between both the mRNA amplification and protein expressions of MMP-1, 3, 9 were not observed, but there is well correlation in MMP-2 expression. Conclusion : We concluded that the over-expressions of the MMP-1, 2, 3, 9 may contribute to the development of degeneration of the intervertebral disc.

Simvastatin as a Modulator of Tissue Remodeling through Inhibition of Matrix Metalloproteinase (MMP) Release from Human Lung Fibroblasts

  • Ra, Ji-Eun;Lee, Ji-Kyoung;Kim, Hui-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제71권3호
    • /
    • pp.172-179
    • /
    • 2011
  • Background: Statins can regulate the production of pro-inflammatory cytokines and inhibit MMP production or activation in a variety of types of cells. This study evaluated whether statins would inhibit MMP release from human lung fibroblasts, which play a major role in remodeling processes. Methods: This study, using an in-vitro model (three-dimensional collagen gel contraction system), evaluated the effect of cytokines (tumor necrosis factor-${\alpha}$, TNF-a and interleukin-$1{\beta}$, IL-1b) on the MMP release and MMP activation from human lung fibroblasts. Collagen degradation induced by cytokines and neutrophil elastase (NE) was evaluated by quantifying hydroxyproline. Results: In three-dimensional collagen gel cultures (3D cultures) where cytokines (TNF-a and IL-1b) can induce the production of MMPs by fibroblasts, it was found that simvastatin inhibited MMP release. In 3D cultures, cytokines together with NE induced collagen degradation and can lead to activation of the MMP, which was inhibited by simvastatin. Conclusion: Simvastatin may play a role in regulating human lung fibroblast functions in repair and remodeling processes by inhibiting MMP release and the conversion from the latent to the active form of MMP.

Viscum album and its Constituents Downregulate MMP-13 Expression in Chondrocytes and Protect Cartilage Degradation

  • Lee, Ju Hee;Kwon, Yong Soo;Jung, Da Young;Kim, Na Young;Lim, Hyun;Kim, Hyun Pyo
    • Natural Product Sciences
    • /
    • 제27권3호
    • /
    • pp.151-160
    • /
    • 2021
  • Under some pathological conditions such as osteoarthritis, matrix metalloproteinases (MMPs) including MMP-13 have an important role in degrading cartilage materials. When the regulatory effects of some herbal extracts on MMP-13 expression were examined to evaluate the cartilage-protective potential, the ethanol extract of the radix of Viscum album was found to strongly downregulate MMP-13 induction in IL-1β-treated chondrocytes, SW1353 cells. Based on this finding, activity-guided separation was carried out, which yielded five constituents identified as 3,5-dihydroxy-1,7-bis(4-hydroxyphenyl)heptane (1), hesperetin-7-glucoside (2), syringin (3), homoflavoyadorinin B (4), and 4,4'-dihydroxy-3,6'-dimethoxychalcone-2'-glucoside (5). Of these, 1 and 5 significantly inhibited MMP-13 expression in SW1353 cells, with 5 being the most potent. Compound 5, a chalcone derivative, showed the downregulation of MMP-13 at 20 - 100 μM. The mechanism study revealed that 5 exerted MMP-13 down-regulatory action, at least in part, by interrupting the signal transducer and activator of transcription 1 (STAT1) activation pathway. Furthermore, this compound protected against cartilage degradation in an IL-1-treated rabbit cartilage explant culture. All these findings demonstrated for the first time that Viscum album and its constituents, especially chalcone derivative (5), possessed cartilage-protective activity. These natural products may have the potential for alleviating cartilage degradation.

Comparison of the Effects of Matrix Metalloproteinase Inhibitors on TNF-α Release from Activated Microglia and TNF-α Converting Enzyme Activity

  • Lee, Eun-Jung;Moon, Pyong-Gon;Baek, Moon-Chang;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.414-419
    • /
    • 2014
  • Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate cell-matrix composition and are also involved in processing various bioactive molecules such as cell-surface receptors, chemokines, and cytokines. Our group recently reported that MMP-3, -8, and -9 are upregulated during microglial activation and play a role as proinflammatory mediators (Lee et al., 2010, 2014). In particular, we demonstrated that MMP-8 has tumor necrosis factor alpha (TNF-${\alpha}$)-converting enzyme (TACE) activity by cleaving the prodomain of TNF-${\alpha}$ and that inhibition of MMP-8 inhibits TACE activity. The present study was undertaken to compare the effect of MMP-8 inhibitor (M8I) with those of inhibitors of other MMPs, such as MMP-3 (NNGH) or MMP-9 (M9I), in their regulation of TNF-${\alpha}$ activity. We found that the MMP inhibitors suppressed TNF-${\alpha}$ secretion from lipopolysaccharide (LPS)-stimulated BV2 microglial cells in an order of efficacy: M8I>NNGH>M9I. In addition, MMP inhibitors suppressed the activity of recombinant TACE protein in the same efficacy order as that of TNF-${\alpha}$ inhibition (M8I>NNGH>M9I), proving a direct correlation between TACE activity and TNF-${\alpha}$ secretion. A subsequent pro-TNF-${\alpha}$ cleavage assay revealed that both MMP-3 and MMP-9 cleave a prodomain of TNF-${\alpha}$, suggesting that MMP-3 and MMP-9 also have TACE activity. However, the number and position of cleavage sites varied between MMP-3, -8, and -9. Collectively, the concurrent inhibition of MMP and TACE by NNGH, M8I, or M9I may contribute to their strong anti-inflammatory and neuroprotective effects.

Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression

  • Kim, Yong-Sam;Kim, Sun-Hee;Kang, Jeong-Gu;Ko, Jeong-Heon
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.623-628
    • /
    • 2012
  • Tissue inhibitor of metalloproteinases (TIMPs; TIMP-1, -2, -3 and -4) are endogenous inhibitor for matrix metalloproteinases (MMPs) that are responsible for remodeling the extracellular matrix (ECM) and involved in migration, invasion and metastasis of tumor cells. Unlike under normal conditions, the imbalance between MMPs and TIMPs is associated with various diseased states. Among TIMPs, TIMP-1, a 184-residue protein, is the only N-linked glycoprotein with glycosylation sites at N30 and N78. The structural analysis of the catalytic domain of human stromelysin-1 (MMP-3) and human TIMP-1 suggests new possibilities of the role of TIMP-1 glycan moieties as a tuner for the proteolytic activities by MMPs. Because the TIMP-1 glycosylation participate in the interaction, aberrant glycosylation of TIMP-1 presumably affects the interaction, thereby leading to pathogenic dysfunction in cancer cells. TIMP-1 has not only the cell proliferation activities but also anti-oncogenic properties. Cancer cells appear to utilize these bilateral aspects of TIMP-1 for cancer progression; an elevated TIMP-1 level exerts to cancer development via MMP-independent pathway during the early phase of tumor formation, whereas it is the aberrant glycosylation of TIMP-1 that overcome the high anti-proteolytic burden. The aberrant glycosylation of TIMP-1 can thus be used as staging and/or prognostic biomarker in colon cancer.

Extracts of Aster species Inhibit Invasive Phenotype and Motility of H-ras MCF10A Human Breast Epithelial Cells Possibly via Downregulation of MMP-2 and MMP-9

  • Ahn, Seong-Min;Lee, Kang-Ro;Moon, A-Ree
    • Biomolecules & Therapeutics
    • /
    • 제10권4호
    • /
    • pp.240-245
    • /
    • 2002
  • Cancer metastasis represents the most important cause of cancer death and antitumor agents that may inhibit this process have been extensively pursued. Invasion and metastasis of malignantly transformed cells involve degradation of the extracellular matrix (ECM) components by matrix metalloproteinases (MMP), especially MMP-2 and -9. We previously showed that H-ras-induced invasive phenotype may involve MMP-2, rather than MMP-9, in MCF10A cells. In the present study, we investigated the chemopreventive effect of Aster, a widely used culinary vegetable in Korea. We screened twelve extracts from three Aster species (Aster scaber, Aster oharai and Aster glehni) for the inhibitory effect on MMP activities of H-ras MCF10A human breast epithelial cells. All of the extracts tested in this study efficiently inhibited the gelatinolytic activities of MMP-2 and MMP-9. A more prominent inhibition was observed in MMP-2 activity compared to MMP-9. Out of twelve extracts, eight extracts showed>90% inhibition of MMP-2 activity in H-ras MCF10A cells while only one extract showed>90% inhibition of MMP-9 activity. We selected three extracts (AO-3, AG-3 and AS-EA) for further studies since they exerted a marked inhibition in the ratio of MMP-2 to MMP-9. Treatment with AO-3, AG-3 and AS-EA in H-ras MCF10A cells caused a significant inhibition of invasive phenotype and migration, proving a chemopreventive potential of these extracts. Taken together, our results demonstrate that extracts of Aster effectively inhibit invasion and migration of highly malignant human breast cells, possibly via downregulation of MMP-2 and MMP-9.

Effects of (-)-Epigallocatechin-3-gallate on Brain Infarction and the Activity Change of Matrix Metalloproteinase-9 Induced by Middle Cerebral Artery Occlusion in Mice

  • Qian, Yong-Ri;Kook, Ji-Hyun;Hwang, Shin-Ae;Kim, Do-Kyung;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권3호
    • /
    • pp.85-88
    • /
    • 2007
  • Matrix metalloproteinases (MMPs) can degrade a wide range of extracellular matrix components. It has been reported that MMP-9 are activated after focal ischemia in experimental animals. (-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, is a potent free radical scavenger and reduces the neuronal damage caused by oxygen free radicals. And it has been known that EGCG could reduce the infarction volume in focal brain ischemia and inhibit MMP-9 activity. To delineate the relationship between the anti-ischemic action and the MMP-9-inhibiting action of EGCG, we investigated the effect of EGCG on brain infarction and the activity of matrix metalloproteinase-9 induced by permanent middle cerebral artery occlusion (pMCAO) in ICR mice. EGCG (40 mg/kg, i.p. $15{\sim}30min$ prior to MCAO) significantly decreased infarction volume at 24 hr after MCAO. GM 6001 (50 mg/kg, i.p. $15{\sim}30min$ prior to MCAO), a MMP inhibitor, also significantly reduced infarction volume. In zymogram, MMP-9 activities began to increase at ipsilateral cortex at 2 hr after MCAO, and the increments of MMP-9 activities were attenuated by EGCG treatment. Western blot for MMP-9 also showed patterns similar to that of zymogram. These findings demonstrate that the anti-ischemic action of EGCG ire mouse focal cerebral ischemia involves its inhibitory effect on MMP-9.

Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes

  • Kim, Woo Kyoung;Kang, Nam E;Kim, Myung Hwan;Ha, Ae Wha
    • Nutrition Research and Practice
    • /
    • 제7권3호
    • /
    • pp.160-165
    • /
    • 2013
  • 3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and $40{\mu}g/mL$ of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP ${\beta}$ and C/EBP ${\alpha}$ were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBP${\beta}$ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from $20{\mu}g/mL$. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes.