Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.11.233

Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression  

Kim, Yong-Sam (Division of KRIBB Strategy Projects, KRIBB)
Kim, Sun-Hee (Division of KRIBB Strategy Projects, KRIBB)
Kang, Jeong-Gu (Division of KRIBB Strategy Projects, KRIBB)
Ko, Jeong-Heon (Division of KRIBB Strategy Projects, KRIBB)
Publication Information
BMB Reports / v.45, no.11, 2012 , pp. 623-628 More about this Journal
Abstract
Tissue inhibitor of metalloproteinases (TIMPs; TIMP-1, -2, -3 and -4) are endogenous inhibitor for matrix metalloproteinases (MMPs) that are responsible for remodeling the extracellular matrix (ECM) and involved in migration, invasion and metastasis of tumor cells. Unlike under normal conditions, the imbalance between MMPs and TIMPs is associated with various diseased states. Among TIMPs, TIMP-1, a 184-residue protein, is the only N-linked glycoprotein with glycosylation sites at N30 and N78. The structural analysis of the catalytic domain of human stromelysin-1 (MMP-3) and human TIMP-1 suggests new possibilities of the role of TIMP-1 glycan moieties as a tuner for the proteolytic activities by MMPs. Because the TIMP-1 glycosylation participate in the interaction, aberrant glycosylation of TIMP-1 presumably affects the interaction, thereby leading to pathogenic dysfunction in cancer cells. TIMP-1 has not only the cell proliferation activities but also anti-oncogenic properties. Cancer cells appear to utilize these bilateral aspects of TIMP-1 for cancer progression; an elevated TIMP-1 level exerts to cancer development via MMP-independent pathway during the early phase of tumor formation, whereas it is the aberrant glycosylation of TIMP-1 that overcome the high anti-proteolytic burden. The aberrant glycosylation of TIMP-1 can thus be used as staging and/or prognostic biomarker in colon cancer.
Keywords
Aberrant glycosylation; Cancer progression; MMP; TIMP-1; Tumor microenvironment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aljada, I. S., Ramnath, N., Donohue, K., Harvey, S., Brooks, J. J., Wiseman, S. M., Khoury, T., Loewen, G., Slocum, H. K. anderson, T. M., Bepler, G. and Tan, D. (2004) Up-regulation of the tissue inhibitor of metalloproteinase-1 protein is associated with progression of human non-small cell lung cancer. J. Clin. Oncol. 22, 3218-3229.   DOI   ScienceOn
2 Korpi, J. T., Hagstrom, J., Lehtonen, N., Parkkinen, J., Sorsa, T., Salo, T. and Laitinen, M. (2011) Expression of matrix metalloproteinases-2, -8, -13, -26 and tissue inhibitors of metalloproteinase-1 in human osteosarcoma. Surg. Oncol. 20, e18-e22.   DOI   ScienceOn
3 Inagaki, D., Oshima, T., Yoshihara, K., Tamura, S., Kanazawa, A., Yamada, T., Yamamoto, N., Sato, T., Shiozawa, M., Morinaga, S., Akaike, M., Fujii, S., Numata, K., Kunisaki, C., Rino, Y., Tanaka, K., Masuda, M. and Imada, T. (2010) Overexpression of tissue inhibitor of metalloproteinase-1 gene correlates with poor outcomes in colorectal cancer. Anticancer Res. 30, 4127-4130.
4 Kim, Y. S., Ahn, Y. H., Song, K. J., Jeong, G., Kang, J. G., Lee, J. H., Jeon, S. K., Kim, H. C., Yoo, J. S. and Ko, J. H. (2012) Overexpression and ${\beta}$-1,6-N-acetylglucosaminylation initiated aberrant glycosylation of TIMP-1. J. Biol. Chem. 287, 32467-32478.   DOI   ScienceOn
5 Ahn, Y. H., Kim, Y. S., Ji, E. S., Lee, J. Y., Jung, J. A., Ko, J. H. and Jong S. Y. (2010) Comparative quantitation of aberrant glycoforms by lectin-based glycoprotein enrichment coupled with multiple-reaction monitoring mass spectrometry. Anal. Chem. 82, 4441-4447.   DOI   ScienceOn
6 Bhowmick, N. A., Neilson, E. G. and Moses, H. L. (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432, 332-337.   DOI   ScienceOn
7 Stetler-Stevenson, W. G., Aznavoorian, S. and Liotta, L. A. (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541-573.   DOI   ScienceOn
8 Nagase, H. and Woessner, J. F. Jr. (1999) Matrix metalloproteinases. J. Biol. Chem. 274, 21491-21494.   DOI
9 Welgus, H. G., Jeffrey, J. J. and Eisen, A. Z. (1981) The collagen substrate specificity of human skin fibroblast collagenase. J. Biol. Chem. 256, 9511-9515.
10 Hasty, K. A., Jeffrey, J. J., Hibbs, M. S. and Welgus, H. G. (1987) The collagen substrate specificity of human neutrophil collagenase. J. Biol. Chem. 262, 10048-10052.
11 Birkedal-Hansen, H., Moore, W. G., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A. and Engler, J. A. (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 4, 197-250.   DOI
12 Varki, A. (1995) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97-130.
13 Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C. and Shi, Y. E. (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 271, 30375-30380.   DOI   ScienceOn
14 Laurent, G. J. and Tetley, T. D. (1984) Pulmonary fibrosis and emphysema: connective tissue disorders of the lung. Eur. J. Clin. Investig. 14, 411-413.   DOI   ScienceOn
15 Gomis-Rueth, F., Maskos, K., Michael Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., Bourenkovk, G. P., Bartunikk, H. and Bode, W. (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77-81.   DOI   ScienceOn
16 Moens, S. and Vanderleyden, J. (1997) Glycoproteins in prokaryotes. Arch. Microbiol. 168, 169-175.   DOI
17 Daniels, M. A., Hogquist, K. A. and Jameson, S. C. (2002) Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat. Immunol. 3, 903-910.   DOI   ScienceOn
18 Dwek, M. V., Ross, H. A. and Leathem, A. J. (2001) Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer. Proteomics 1, 756-762.   DOI
19 Freeze, H. H. (2001) Update and perspectives on congenital disorders of glycosylation. Glycobiology 11, 129R-143R.   DOI   ScienceOn
20 Thaysen-Andersen, M., Thøgersen, I. B., Lademann, U., Offenberg, H., Giessing, A. M. B., Enghild, J. J., Nielsen, H. J., Brünner, N. and Højrup, P. (2008) Investigating the biomarker potential of glycoproteins using comparative glycoprofiling - application to tissue inhibitor of metalloproteinases-1. Biochim. Biophys. Acta 1784, 455-463.   DOI   ScienceOn
21 Jung, K., Nowak, L., Lein, M., Henke, W., Schnorr, D. and Loening, S. A. (1996) What kind of specimen should be selected for determining tissue inhibitor of metalloproteinase-1 (TIMP-1) in blood? Clin. Chim. Acta 254, 97-100.   DOI   ScienceOn
22 Luparello, C., Avanzato, G., Carella, C. and Pucci-Minafra, I. (1999) Tissue inhibitor of metalloproteinases (TIMP-1) and proliferative behaviour of clonal breast cancer cells. Breast Cancer Res. Treat. 54, 235-244.   DOI   ScienceOn
23 Guedez, L., Stetler-Stevenson, W. G., Wolff, L., Wang, J., Fukushima, P., Mansoor, A. and Stetler-Stevenson, M. (1998) In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J. Clin. Invest. 102, 2002-2010.   DOI   ScienceOn
24 Li, G., Fridman, R. and Kim, H. R. (1999) Tissue inhibitor of metalloproteinases-1 inhibits apoptosis of human breast epithelial cells. Cancer Res. 59, 6267-6275.
25 Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C. and Yuenian E. Shi, Y. E. (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase4. J. Biol. Chem. 271, 30375-30380.   DOI   ScienceOn
26 Docherty, A. J., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J., Murphy, G. and Reynolds, J. J. (1985) Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318, 66-69.   DOI   ScienceOn
27 Murphy, G., Houbrechts, A., Cockett, M. I., Williamson, R. A., O'Shea, M. and Docherty, A. J. P. (1991) The N-terminal domain of human tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 30, 8097-8102.   DOI   ScienceOn
28 Huang, W., Suzuki, K., Nagase, H., Arumugan, S., Van Doren, S. R. and Brew, K. (1996) Folding and characterization of the amino-terminal domain of human tissue inhibitor of metalloproteinase-1 (TIMP-1) expressed at high yield in E. coli. FEBS Lett. 384, 155-161.   DOI   ScienceOn
29 Mortz, E., Sareneva, T., Haebel, S., Julkunen, I. and Roepstorff, P. (1996) Mass spectrometric characterization of glycosylated interferon-variants separated by gel electrophoresis. Electrophoresis 17, 925-931.   DOI   ScienceOn
30 Stahl, B., Klabunde, T., Witzel, H., Krebs, B., Steup, M., Karas, M. and Hillenkamp, F. (1994) The oligosaccharides of the Fe(III)-Zn(II) purple acid-phosphatase of the red kidney bean-determination of the structure by a combination of matrix-assisted laser-desorption ionization mass spectrometry and selective enzymatic degradation. Eur. J. Biochem. 220, 321-330.   DOI   ScienceOn
31 Garner, B., Merry, A. H., Royle, L., Harvey, D. J., Rudd, P. M. and Thillet, J. (2001) Structural elucidation of the Nand O-glycans of human apolipoprotein(a): role of O-glycans in conferring protease resistance. J. Biol. Chem. 276, 200-208.   DOI
32 Larsen, M. R., Højrup, P. and Roepstorff, P. (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol. Cell. Proteomics 4, 107-119.   DOI
33 Bunkenborg, J., Pilch, B. J., Podtelejnikov, A. V. and Wisniewski, J. R. (2004) Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4, 454-465.   DOI   ScienceOn
34 Holten-Andersen, M. N., Murphy, G., Nielsen, H. J., Pedersen A. N., Christensen, I. J., Høyer-Hansen, G., Brue nner, N. and Stephens, R. W. (1999) Quantitation of TIMP-1 in plasma of healthy blood donors and patients with advanced cancer. Br. J. Cancer. 80, 495-503.   DOI   ScienceOn
35 Sutton, C. W., O'Neill, J. A. and Cottrell, J. S. (1994) Sitespecific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal. Biochem. 218, 34-46.   DOI   ScienceOn
36 Lu, P., Weaver, V. M. and Werb, Z. (2012) The extracellular matrix. A dynamic niche in cancer progression. J. Cell Biol. 196, 395-406   DOI
37 Thaysen-Andersen, M., Thøgersen, I. B., Nielsen, H. J., Lademann, U., Nils Bruenner, N., Enghild, J. J. and Peter Højrup, P. (2007) Rapid and individualspecific glycoprofiling of a low-abundant N-glycosylated protein tissue inhibitor of metalloproteinases-1. Mol. Cell. Proteomics 6, 638-647.   DOI   ScienceOn
38 Kim, Y. S., Hwang, S. Y., Kang, H. Y., Sohn, H., Oh, S., Kim, J. Y., Yoo, J. S., Kim, Y. H., Kim, C. H., Jeon, J. H., Lee, J. M., Kang, H. A., Miyoshi, E., Taniguchi, N., Yoo, H. S. and Ko, J. H. (2008) Functional proteomics study reveals that N-acetylglucosaminyltransferase V reinforces the invasive/metastatic potential of colon cancer through aberrant glycosylation on tissue inhibitor of metalloproteinase-1. Mol. Cell. Proteomics 7, 1-14.   DOI
39 Whiteside, T. L. (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904-5912.   DOI   ScienceOn
40 Kang, J. G., Ko, J. H. and Kim, Y. S. (2011) Pros and cons of using aberrant glycosylation as companion biomarkers for therapeutics in cancer. BMB Rep. 44, 765-771.   과학기술학회마을   DOI   ScienceOn
41 Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., Fong, S. F., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D. L. and Weaver, V. M. (2009) Matrix cross-linking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906.   DOI   ScienceOn
42 Egeblad, M. and Werb, Z. (2002) New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161-174.   DOI   ScienceOn
43 Docherty, A. J., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J., Murphy, G. and Reynolds, J. J. (1985) Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318, 66-69.   DOI   ScienceOn
44 Fowell, A. J., Collins, J. E., Duncombe, D. R., Pickering, J. A., Rosenberg, W. M. and Benyon, R. C. (2011) Silencing tissue inhibitors of metalloproteinases (TIMPs) with short interfering RNA reveals a role for TIMP-1 in hepatic stellate cell proliferation. Biochem. Biophys. Res. Commun. 407, 277-282.   DOI   ScienceOn
45 Taube, M. E., Liu, X. W., Fridman, R. and Kim H. R. (2006) TIMP-1 regulation of cell cycle in human breast epithelial cells via stabilization of p27KIP1 protein. Oncogene 25, 3041-3048.   DOI   ScienceOn
46 Bloomston, M., Shafii, A., Zervos, E. and Rosemurgy, A. S. (2005) TIMP-1 antisense gene transfection attenuates the invasive potential of pancreatic cancer cells in vitro and inhibits tumor growth in vivo. Am. J. Surg. 189, 675-679.   DOI   ScienceOn
47 Rho, S. B., Chung, B. M. and Lee, J. H. (2007) TIMP-1 regulates cell proliferation by interacting with the ninth zinc finger domain of PLZF. J. Cell. Biochem. 101, 57-67.   DOI   ScienceOn
48 Tsagaraki, I., Tsilibary, E. C. and Tzinia, A. K. (2010) TIMP-1 interaction with v3 integrin confers resistance to human osteosarcoma cell line MG-63 against TNF-${\alpha}$-induced apoptosis. Cell Tissue Res. 342, 87-96.   DOI
49 Davidsen, M. L., Wurtz, S. O., Romer, M. U., Sorensen, N. M., Johansen, S. K., Christensen, I. J., Larsen, J. K., Offenberg, H., Brunner, N. and Lademann, U. (2006) TIMP-1 gene deficiency increases tumor cell sensitivity to chemotherapy-induced apoptosis. Br. J. Cancer 95, 114-120.
50 Khokha, R. (1994) Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. J. Natl. Cancer Inst. 86, 299-304.   DOI   ScienceOn
51 Martin, D. C., Ruther, U., Sanchez-Sweatman, O. H., Orr, F. W. and Khokha, R. (1996) Inhibition of SV40 T antigen-induced hepatocellular carcinoma in TIMP-1 transgenic mice. Oncogene 13, 569-576.