• Title/Summary/Keyword: Matrix Converter

Search Result 181, Processing Time 0.036 seconds

DDPWM Based Control of Matrix Converters

  • Li, Yu-Long;Choi, Nam-Sup;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.535-543
    • /
    • 2009
  • In this paper, pulse-width modulation (PWM) control strategy of various topologies of matrix converters is presented, which is based on direct duty ratio PWM (DDPWM). Because the DDPWM method has the characteristics of the inherent per-phase modular structure, it can be effectively applied to single-phase, two-phase and three-phase four-leg matrix converters as well as the common three-phase to three-phase matrix converter. Also, this paper treats command generation method in each matrix converter. The feasibility and validity of the proposed method are verified by experimental results.

Improvement of Output Linearity of Matrix Converters with a General R-C Commutation Circuit

  • Choi, Nam-Sup;Li, Yulong;Han, Byung-Moon;Nho, Eui-Cheol;Ko, Jong-Sun
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.232-242
    • /
    • 2009
  • In this paper, a matrix converter with improved low frequency output performance is proposed by achieving a one-step commutation owing to a general commutation circuit applicable to n-phase to m-phase matrix converters. The commutation circuit consists of simple resister and capacitor components, leading to a very stable, reliable and robust operation. Also, it requires no extra sensing information to achieve commutation, allowing for a one-step commutation like a conventional dead time commutation. With the dead time commutation strategy applied, the distortion caused by commutation delay is analyzed and compensated, therefore leading to better output linear behavior. In this paper, detailed commutation procedures of the R-C commutation circuit are analyzed. A selection of specific semiconductor switches and commutation circuit components is also provided. Finally, the effectiveness of the proposed commutation method is verified through a two-phase to single-phase matrix converter and the feasibility of the compensation approach is shown by an open loop space vector modulated three-phase matrix converter with a passive load.

Design of an FPGA Based Controller for Delta Modulated Single-Phase Matrix Converters

  • Agarwal, Anshul;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.974-981
    • /
    • 2012
  • A FPGA based delta modulated single phase matrix converter has been developed that may be used in both cyclo-converters and cyclo-inverters. This converter is ideal for variable speed electrical drives, induction heating, fluorescent lighting, ballasts and high frequency power supplies. The peripheral input-output and FPGA interfacing have been developed through Xilinx 9.2i, to generate delta modulated trigger pulses for the converter. The controller has been relieved of the time consuming computational task of PWM signal generation by implementing the method of trigger pulse generation in a FPGA by using Hardware Description Language VHDL in Xilinx. The trigger circuit has been tested qualitatively by observing various waveforms on an oscilloscope. The operation of the proposed system has been found to be satisfactory.

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.

Carrier-based Modulation Method for Matrix Converter (캐리어를 이용한 매트릭스 컨버터의 전압 변조 방법)

  • Yoon Young-Doo;Sul Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.543-549
    • /
    • 2005
  • This paper presents a carrier-based modulation method for the control of a matrix converter. By using the offset voltage and changing the slope of the carrier, it is possible to synthesize sinusoidal input currents with unity power factor and the desired output voltages. The proposed method is equivalent to the so called SVPWM (Space Vector PWM) method, but its implementation is much easier. Moreover, the proposed method is very attractive because it is possible to apply the 2 phase t 3 phase modulation method, overmodulation method and other methods which are well-developed in the study of voltage source inverters (VSI) to the matrix coverter modulation. The feasibility of the proposed modulation method has been verified by computer simulation and experimental results.

Direct Duty-ratio Modulated Fault-tolerant Strategy for Matrix Converter-fed Motor Drives

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.24-32
    • /
    • 2012
  • Direct duty-ratio PWM schemes for continuous fault tolerant operation of matrix converter-fed motor drives are presented. The proposed method features simple modular modulation structure based on per output phase concept, which requires no additional modification on the normal modulation schemes for fault-tolerant applications. Realizations of fault-tolerant strategy applied to different system configurations are also treated to enhance the system flexibility. The proposed method can be effectively applied to treat the motor open phase fault and converter switching device failure. Simulation and experimental results show the feasibility and validation of the proposed strategies.

Development of Matrix Converter for Grid-Connected Wind Power Generation (풍력발전 계통연계를 위한 매트릭스 컨버터의 개발)

  • Choi, Nam-Sup;Li, Yulong;Han, Byung-Moon;Ko, Jong-Sun;Nho, Eui-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.208-210
    • /
    • 2007
  • As a renewable power source, wind power generation has been research interest for many years. And power electronic converters have been developed and applied in variable speed wind turbines. This paper presents the basic development and implementation of space-vector modulated three phase AC-AC matrix converter for variable speed wind power system. Basic matrix converter operation is described, where a new bidirectional switch structure with commutation circuit is used. Finally, experiment results of basic converter operation are shown.

  • PDF

A Study on Current Control Method for Induction Motor Using Matrix Converter (매트릭스 컨버터에 의한 유도전동기 전류제어기법에 관한 연구)

  • Nguyen Minh-Hoang;Jung Eui-Heon;Lee Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.556-560
    • /
    • 2004
  • Three-phase Matrix Converter has become an effective substitution for the conventional converter module due to generation of the feasible variety of frequency and amplitude output voltage without energy storage elements besides the advantage of unity input power factor at the power supply and the regeneration capability. This paper introduces two kinds of current controllers for the matrix converter fed induction motor. Some simulated results are carried out to verify the effectiveness of the two-proposed methods as compared with the classical method using voltage source inverter.

  • PDF

Stability Analysis and Control of Nonlinear Behavior in V2 Switching Buck Converter

  • Hu, Wei;Zhang, Fangying;Long, Xiaoli;Chen, Xinbing;Deng, Wenting
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1208-1216
    • /
    • 2014
  • Mismatch between switching frequency and circuit parameters often occurs in industrial applications, which would lead to instability phenomena. The bifurcation behavior of $V^2$ controlled buck converter is investigated as the pulse width modulation period is varied. Nonlinear behavior is analyzed based on the monodromy matrix of the system. We observed that the stable period-1 orbit was first transformed to the period-2 bifurcation, which subsequently changed to chaos. The mechanism of the series of period-2 bifurcations shows that the characteristic eigenvalue of the monodromy matrix passes through the unit circle along the negative real axis. Resonant parametric perturbation technique has been applied to prevent the onset of instability. Meanwhile, the extended stability region of the converter is obtained. Simulation and experimental prototypes are built, and the corresponding results verify the theoretical analysis.

Simulation of Matrix Converter Using PSIM (PSIM을 이용한 매트릭스 컨버터의 시뮬레이션)

  • Park G.L.;Choi J.H.;Kim T.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.635-638
    • /
    • 2003
  • In the paper, a three-phase-in three-phase-out Matrix Converter(MC) for the PMSM Is simulated by the PSIM simulator. A lighter L-C filters are installed at the input side of the Converter to remove the current harmonics around the switching frequency. In modelling the Matrix Converter, the PSIM is the powerful tool that the basic researches can be quickly performed within the given periods, because the simulation calculation by PSIM is very fast, compared to other simulators such as Matlab, Saber, and Pspice.

  • PDF