• Title/Summary/Keyword: Mathematics Teaching

Search Result 2,178, Processing Time 0.024 seconds

A Case Study on the Effect of the Artificial Intelligence Storytelling(AI+ST) Learning Method (인공지능 스토리텔링(AI+ST) 학습 효과에 관한 사례연구)

  • Yeo, Hyeon Deok;Kang, Hye-Kyung
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.495-509
    • /
    • 2020
  • This study is a theoretical research to explore ways to effectively learn AI in the age of intelligent information driven by artificial intelligence (hereinafter referred to as AI). The emphasis is on presenting a teaching method to make AI education accessible not only to students majoring in mathematics, statistics, or computer science, but also to other majors such as humanities and social sciences and the general public. Given the need for 'Explainable AI(XAI: eXplainable AI)' and 'the importance of storytelling for a sensible and intelligent machine(AI)' by Patrick Winston at the MIT AI Institute [33], we can find the significance of research on AI storytelling learning model. To this end, we discuss the possibility through a pilot study targeting general students of an university in Daegu. First, we introduce the AI storytelling(AI+ST) learning method[30], and review the educational goals, the system of contents, the learning methodology and the use of new AI tools in the method. Then, the results of the learners are compared and analyzed, focusing on research questions: 1) Can the AI+ST learning method complement algorithm-driven or developer-centered learning methods? 2) Whether the AI+ST learning method is effective for students and thus help them to develop their AI comprehension, interest and application skills.

Development and Application of Convergence Education about Support Vector Machine for Elementary Learners (초등 학습자를 위한 서포트 벡터 머신 융합 교육 프로그램의 개발과 적용)

  • Yuri Hwang;Namje Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.95-103
    • /
    • 2023
  • This paper proposes an artificial intelligence convergence education program for teaching the main concept and principle of Support Vector Machines(SVM) at elementary schools. The developed program, based on Jeju's natural environment theme, explains the decision boundary and margin of SVM by vertical and parallel from 4th grade mathematics curriculum. As a result of applying the developed program to 3rd and 5th graders, most students intuitively inferred the location of the decision boundary. The overall performance accuracy and rate of reasonable inference of 5th graders were higher. However, in the self-evaluation of understanding, the average value was higher in the 3rd grade, contrary to the actual understanding. This was due to the fact that junior learners had a greater tendency to feel satisfaction and achievement. On the other hand, senior learners presented more meaningful post-class questions based on their motivation for further exploration. We would like to find effective ways for artificial intelligence convergence education for elementary school students.

Comparison of the Covariational Reasoning Levels of Two Middle School Students Revealed in the Process of Solving and Generalizing Algebra Word Problems (대수 문장제를 해결하고 일반화하는 과정에서 드러난 두 중학생의 공변 추론 수준 비교)

  • Ma, Minyoung
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.569-590
    • /
    • 2023
  • The purpose of this case study is to compare and analyze the covariational reasoning levels of two middle school students revealed in the process of solving and generalizing algebra word problems. A class was conducted with two middle school students who had not learned quadratic equations in school mathematics. During the retrospective analysis after the class was over, a noticeable difference between the two students was revealed in solving algebra word problems, including situations where speed changes. Accordingly, this study compared and analyzed the level of covariational reasoning revealed in the process of solving or generalizing algebra word problems including situations where speed is constant or changing, based on the theoretical framework proposed by Thompson & Carlson(2017). As a result, this study confirmed that students' covariational reasoning levels may be different even if the problem-solving methods and results of algebra word problems are similar, and the similarity of problem-solving revealed in the process of solving and generalizing algebra word problems was analyzed from a covariation perspective. This study suggests that in the teaching and learning algebra word problems, rather than focusing on finding solutions by quickly converting problem situations into equations, activities of finding changing quantities and representing the relationships between them in various ways.

The Effect of Mathematics Classes Using AlgeoMath on Mathematical Problem-Solving Ability and Mathematical Attitude: Focusing on the 'Cuboid' Unit of the Fifth Grade in Elementary School (알지오매스 기반 수업이 수학적 문제해결력 및 태도에 미치는 효과: 초등학교 5학년 '직육면체' 단원을 중심으로)

  • Seung Dong Lee;Jong Hak Lee
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • The purpose of this study is to investigate the effects of classes using AlgeoMath on fifth grade elementary students' mathematical problem-solving skills and mathematical attitudes. For this purpose, the 'cuboid' section of the 5th grade elementary textbook based on AlgeoMath was reorganized. A total of 8 experimental classes were conducted using this teaching and learning material. And the quantitative data collected before and after the experimental lesson were statistically analyzed. In addition, by presenting instances of experimental lessons using AlgeoMath, we investigated the effectiveness and reality of classes using engineering in terms of mathematical problem-solving ability and attitude. The results of this study are as follows. First, in the mathematical problem-solving ability test, there was a significant difference between the experimental group and the comparison group at the significance level. In other words, lessons using AlgeoMath were found to be effective in increasing mathematical problem-solving skills. Second, in the mathematical attitude test, there was no significant difference between the experimental group and the comparison group at the significance level. However, the average score of the experimental group was found to be higher than that of the comparison group for all sub-elements of mathematical attitude.

An Analysis on the Effect of Independent Study Project Learning on Self-Directed Learning Ability and Mathematical Self-Efficacy of the Mathematically Gifted Elementary Students (독자적 연구 프로젝트 학습이 초등수학영재의 자기주도적 학습능력과 수학적 자기효능감에 미치는 영향 분석)

  • Goo, Jong Seo;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.2
    • /
    • pp.205-230
    • /
    • 2015
  • The purpose of this study is, targeting 5th and 6th grades mathematically gifted elementary students, to analyze the effect of independent study project learning on self-directed learning ability and mathematical self-efficacy, and based on the results, examine the implications that independent study project learning has in special education for the gifted. In order to solve the study problems, 5th grade mathematically gifted elementary students(40) and 6th grade mathematically gifted elementary students(39) who had passed the selection criteria of D education institute for the gifted and had been receiving special education for the gifted were selected. The study results are as below. First, although self-directed learning ability had no significant difference at p<0.05, it statistically had some differences in averages between pre-test and post-test results. Second, although mathematical self-efficacy had no significant difference at p<0.05, it statistically had some differences in averages between pre-test and post-test results. Third, in the aspects of self-directed learning ability and mathematical self-efficacy, independent study project learning had a more positive effect on 5th grade mathematically gifted elementary students than 6th grade mathematically gifted elementary students. In addition, it had significant differences in 'the level of mathematical tasks', a sub-level of mathematical self-efficacy, and 'the openness of learning', 'the initiative of learning', and 'a sense of responsibility for learning', sub-levels of self-directed learning ability. These results imply that independent study project learning has a positive effect on self-directed learning ability and mathematical self-efficacy of mathematically gifted elementary students so that it could be meaningfully used as a teaching method for special education for the gifted at educational sites of independent study project learning.

Design and Implementation of IoT based Low cost, Effective Learning Mechanism for Empowering STEM Education in India

  • Simmi Chawla;Parul Tomar;Sapna Gambhir
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.163-169
    • /
    • 2024
  • India is a developing nation and has come with comprehensive way in modernizing its reducing poverty, economy and rising living standards for an outsized fragment of its residents. The STEM (Science, Technology, Engineering, and Mathematics) education plays an important role in it. STEM is an educational curriculum that emphasis on the subjects of "science, technology, engineering, and mathematics". In traditional education scenario, these subjects are taught independently, but according to the educational philosophy of STEM that teaches these subjects together in project-based lessons. STEM helps the students in his holistic development. Youth unemployment is the biggest concern due to lack of adequate skills. There is a huge skill gap behind jobless engineers and the question arises how we can prepare engineers for a better tomorrow? Now a day's Industry 4.0 is a new fourth industrial revolution which is an intelligent networking of machines and processes for industry through ICT. It is based upon the usage of cyber-physical systems and Internet of Things (IoT). Industrial revolution does not influence only production but also educational system as well. IoT in academics is a new revolution to the Internet technology, which introduced "Smartness" in the entire IT infrastructure. To improve socio-economic status of the India students must equipped with 21st century digital skills and Universities, colleges must provide individual learning kits to their students which can help them in enhancing their productivity and learning outcomes. The major goal of this paper is to present a low cost, effective learning mechanism for STEM implementation using Raspberry Pi 3+ model (Single board computer) and Node Red open source visual programming tool which is developed by IBM for wiring hardware devices together. These tools are broadly used to provide hands on experience on IoT fundamentals during teaching and learning. This paper elaborates the appropriateness and the practicality of these concepts via an example by implementing a user interface (UI) and Dashboard in Node-RED where dashboard palette is used for demonstration with switch, slider, gauge and Raspberry pi palette is used to connect with GPIO pins present on Raspberry pi board. An LED light is connected with a GPIO pin as an output pin. In this experiment, it is shown that the Node-Red dashboard is accessing on Raspberry pi and via Smartphone as well. In the final step results are shown in an elaborate manner. Conversely, inadequate Programming skills in students are the biggest challenge because without good programming skills there would be no pioneers in engineering, robotics and other areas. Coding plays an important role to increase the level of knowledge on a wide scale and to encourage the interest of students in coding. Today Python language which is Open source and most demanding languages in the industry in order to know data science and algorithms, understanding computer science would not be possible without science, technology, engineering and math. In this paper a small experiment is also done with an LED light via writing source code in python. These tiny experiments are really helpful to encourage the students and give play way to learn these advance technologies. The cost estimation is presented in tabular form for per learning kit provided to the students for Hands on experiments. Some Popular In addition, some Open source tools for experimenting with IoT Technology are described. Students can enrich their knowledge by doing lots of experiments with these freely available software's and this low cost hardware in labs or learning kits provided to them.

Domestic and International Experts' Perception of Policy and Direction on STEAM Education (융합인재교육(STEAM)의 정책과 실행 방향에 대한 국내외 전문가들의 인식)

  • Jung, Jaehwa;Jeon, Jaedon;Lee, Hyonyong
    • Journal of Science Education
    • /
    • v.39 no.3
    • /
    • pp.358-375
    • /
    • 2015
  • The purposes of this study were to investigate the value, necessity and legitimacy of STEAM Education and to propose practical approaching methods for STEAM Education to be applicable in Korea through a variety of literature review, case studies and collecting suggestions from domestic and international educational experts. The research questions are as follows: (1) To investigate the perception, understanding and recognitions of domestic and foreign professionals in STEAM education. (2) To analyze policy implications for an improvement in STEAM. The following aspects of STEAM were found to be challenges in our current STEAM policy after analyzing multiple questionnaires with the professionals and case studies including their experiences, understanding, supports and directions of the policy from the governments. The results indicate that (1) there was a lack of precise and conceptual understanding of STEAM in respect to experience. Training sessions for teachers in this field to help transform their perception is necessary. Development of practical programs with an easy access is also required. It is important to get the aims of related educational activities recognized by the professionals and established standards for an evaluation. The experts perceived that a theme-based learning is the most preferred and effective approaching method and the programs that develop creative thinking and learning applicable to practice are required to promote. (2) The results indicate that there was a lack of programs and inducements for supporting outstanding STEAM educators. It is shown that making an appropriate environment for STEAM education takes the first priority before training numbers of teachers unilaterally, thus securing enough budget seems critical. The professionals also emphasize on developing specialized teaching materials that include diverse inter-related subjects such as science technology, engineering, arts and humanities and social science with diverse viewpoints and advanced technology. This work requires a STEAM network for teachers to link up and share their materials, documents and experiences. It is necessary to get corporations, universities, and research centers participated in the network. (3) With respect to direction, it is necessary to propose policy that makes STEAM education ordinary and more practical in the present education system. The professionals have recommended training sessions that help develop creative thinking and amalgamative problem-solving techniques. They require reducing the workload of teachers and changing teachers' perspectives towards STEAM. They further urge a tight cooperation between departments of the government related with STEAM.

  • PDF

A Case Study on the Development of Real-Time Interactive Class Data among Non-face-to-Face Remote Class Types (비대면 원격수업 형태 중 실시간 쌍방향 수업 자료 개발 사례 연구: 고등학교 기하 과목 공간도형 단원의 평면의 결정 요건을 중심으로)

  • Lee, Dong Gun;Ahn, Sang Jin
    • Communications of Mathematical Education
    • /
    • v.35 no.2
    • /
    • pp.173-191
    • /
    • 2021
  • This study noted that a survey of teachers in a leading study conducted in Korea during the Pandemics period pointed out that the "real-time interactive" classes account for a significantly small portion of the remote class format. Contentually, the study reported cases of developing and applying "real-time interactive" class materials based on "planar decision requirements" of high school mathematics subject geometry. The teacher who participated in the development was a math teacher who worked at a Seoul-based high school with 28 years of high school teaching experience, and a teacher who was in charge of geometry in the math department in 2020. The development teacher decided to develop real-time interactive classes. In particular, the materials were developed by organizing the class guidance plan in four stages: 'Meeting and Class Guidance', 'Giving motivation', 'Suggesting tasks', 'Individual Investigative Activities and Teacher Feedback' and 'Reflection and Evaluation' which were selected through the process of selecting the class contents and selecting online class tools. At this time, the development teacher produced and presented about five minutes of video material using the videooscribe, a whiteboard animation program. And in case of task number 8, it consisted of recording the students' free thoughts after class, which served as a role of assessment by students themselves and providing feedback to their teachers. This study is a case study that introduces a series of courses in which field teachers develop class materials, and in addition to presenting class materials that can be applied directly to classes, is a result of a study that focuses on the role of presenting samples for future class data development. The materials developed were verified as class materials based on the opinions of the students who participated in the class and the results of the evaluation commissioned by the three math teachers.