• Title/Summary/Keyword: Mathematics Framework

Search Result 409, Processing Time 0.023 seconds

A REMARK ON MULTI-VALUED GENERALIZED SYSTEM

  • Kum, Sangho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.163-169
    • /
    • 2011
  • Recently, Kazmi and Khan [7] introduced a kind of equilibrium problem called generalized system (GS) with a single-valued bi-operator F. In this note, we aim at an extension of (GS) due to Kazmi and Khan [7] into a multi-valued circumstance. We consider a fairly general problem called the multi-valued quasi-generalized system (in short, MQGS). Based on the existence of 1-person game by Ding, Kim and Tan [5], we give a generalization of (GS) in the name of (MQGS) within the framework of Hausdorff topological vector spaces. As an application, we derive an existence result of the generalized vector quasi-variational inequality problem. This result leads to a multi-valued vector quasi-variational inequality extension of the strong vector variational inequality (SVVI) due to Fang and Huang [6] in a general Hausdorff topological vector space.

ĆIRIĆ TYPE ALPHA-PSI F-CONTRACTION INVOLVING FIXED POINT ON A CLOSED BALL

  • Hussain, Aftab
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.19-34
    • /
    • 2019
  • The article is written with a view to introducing the new idea of an F-contraction on a closed ball and have new ${\acute{C}}iri{\acute{c}}$ type fixed point theorems in the framework of a complete metric space. That is why this outcome becomes useful for the contraction of the mapping on a closed ball instead of the whole space. At the same time, some comparative examples are constructed which establish the superiority of our results. It can be stated that the results that have come into being give proof of extension as well as substantial generalizations and improvements of several well known results in the existing comparable literature.

A DEEP LEARNING ALGORITHM FOR OPTIMAL INVESTMENT STRATEGIES UNDER MERTON'S FRAMEWORK

  • Gim, Daeyung;Park, Hyungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.311-335
    • /
    • 2022
  • This paper treats Merton's classical portfolio optimization problem for a market participant who invests in safe assets and risky assets to maximize the expected utility. When the state process is a d-dimensional Markov diffusion, this problem is transformed into a problem of solving a Hamilton-Jacobi-Bellman (HJB) equation. The main purpose of this paper is to solve this HJB equation by a deep learning algorithm: the deep Galerkin method, first suggested by J. Sirignano and K. Spiliopoulos. We then apply the algorithm to get the solution to the HJB equation and compare with the result from the finite difference method.

Quantification of Fibers through Automatic Fiber Reconstruction from 3D Fluorescence Confocal Images

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Motivation: Fibers as the extracellular filamentous structures determine the shape of the cytoskeletal structures. Their characterization and reconstruction from a 3D cellular image represent very useful quantitative information at the cellular level. In this paper, we presented a novel automatic method to extract fiber diameter distribution through a pipeline to reconstruct fibers from 3D fluorescence confocal images. The pipeline is composed of four steps: segmentation, skeletonization, template fitting and fiber tracking. Segmentation of fiber is achieved by defining an energy based on tensor voting framework. After skeletonizing segmented fibers, we fit a template for each seed point. Then, the fiber tracking step reconstructs fibers by finding the best match of the next fiber segment from the previous template. Thus, we define a fiber as a set of templates, based on which we calculate a diameter distribution of fibers.

DYNAMIC BEHAVIOR OF CRACKED BEAMS AND SHALLOW ARCHES

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.869-890
    • /
    • 2022
  • We develop a rigorous mathematical framework for studying dynamic behavior of cracked beams and shallow arches. The governing equations are derived from the first principles, and stated in terms of the subdifferentials of the bending and the axial potential energies. The existence and the uniqueness of the solutions is established under various conditions. The corresponding mathematical tools dealing with vector-valued functions are comprehensively developed. The motion of beams and arches is studied under the assumptions of the weak and strong damping. The presence of cracks forces weaker regularity results for the arch motion, as compared to the beam case.

HYBRID MONOTONE PROJECTION ALGORITHMS FOR ASYMPTOTICALLY QUASI-PSEUDOCONTRACTIVE MAPPINGS

  • Wu, Changqun;Cho, Sun-Young
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.415-423
    • /
    • 2009
  • In this paper, we consider the hybrid monotone projection algorithm for asymptotically quasi-pseudocontractive mappings. A strong convergence theorem is established in the framework of Hilbert spaces. Our results mainly improve the corresponding results announced by [H. Zhou, Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009) 3140-3145] and also include Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006) 1140-1152; Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal. 68 (2008) 2828-2836] as special cases.

MARGIN-BASED GENERALIZATION FOR CLASSIFICATIONS WITH INPUT NOISE

  • Choe, Hi Jun;Koh, Hayeong;Lee, Jimin
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.217-233
    • /
    • 2022
  • Although machine learning shows state-of-the-art performance in a variety of fields, it is short a theoretical understanding of how machine learning works. Recently, theoretical approaches are actively being studied, and there are results for one of them, margin and its distribution. In this paper, especially we focused on the role of margin in the perturbations of inputs and parameters. We show a generalization bound for two cases, a linear model for binary classification and neural networks for multi-classification, when the inputs have normal distributed random noises. The additional generalization term caused by random noises is related to margin and exponentially inversely proportional to the noise level for binary classification. And in neural networks, the additional generalization term depends on (input dimension) × (norms of input and weights). For these results, we used the PAC-Bayesian framework. This paper is considering random noises and margin together, and it will be helpful to a better understanding of model sensitivity and the construction of robust generalization.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

The effect of magnetic field and inclined load on a poro-thermoelastic medium using the three-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.243-251
    • /
    • 2024
  • In the current work, a poro-thermoelastic half-space issue with temperature-dependent characteristics and an inclined load is examined in the framework of the three-phase-lag model (3PHL) while taking into account the effects of magnetic and gravity fields. The resulting coupled governing equations are non-dimensional and are solved by normal mode analysis. To investigate the impacts of the gravitational field, magnetic field, inclined load, and an empirical material constant, numerical findings are graphically displayed. MATLAB software is used for numerical calculations. Graphs are used to visualize and analyze the computational findings. It is found that the physical quantities are affected by the magnetic field, gravity field, the nonlocal parameter, the inclined load, and the empirical material constant.

U-Net-based Recommender Systems for Political Election System using Collaborative Filtering Algorithms

  • Nidhi Asthana;Haewon Byeon
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2024
  • User preferences and ratings may be anticipated by recommendation systems, which are widely used in social networking, online shopping, healthcare, and even energy efficiency. Constructing trustworthy recommender systems for various applications, requires the analysis and mining of vast quantities of user data, including demographics. This study focuses on holding elections with vague voter and candidate preferences. Collaborative user ratings are used by filtering algorithms to provide suggestions. To avoid information overload, consumers are directed towards items that they are more likely to prefer based on the profile data used by recommender systems. Better interactions between governments, residents, and businesses may result from studies on recommender systems that facilitate the use of e-government services. To broaden people's access to the democratic process, the concept of "e-democracy" applies new media technologies. This study provides a framework for an electronic voting advisory system that uses machine learning.