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MARGIN-BASED GENERALIZATION

FOR CLASSIFICATIONS WITH INPUT NOISE

Hi Jun Choe, Hayeong Koh, and Jimin Lee

Abstract. Although machine learning shows state-of-the-art performan-

ce in a variety of fields, it is short a theoretical understanding of how ma-
chine learning works. Recently, theoretical approaches are actively being

studied, and there are results for one of them, margin and its distribu-
tion. In this paper, especially we focused on the role of margin in the

perturbations of inputs and parameters. We show a generalization bound

for two cases, a linear model for binary classification and neural networks
for multi-classification, when the inputs have normal distributed random

noises. The additional generalization term caused by random noises is

related to margin and exponentially inversely proportional to the noise
level for binary classification. And in neural networks, the additional

generalization term depends on (input dimension) × (norms of input and

weights). For these results, we used the PAC-Bayesian framework. This
paper is considering random noises and margin together, and it will be

helpful to a better understanding of model sensitivity and the construc-

tion of robust generalization.

1. Introduction

Machine learning models, particularly deep neural networks, have achieved
state-of-the-art performance on various tasks. Machine learning is a task that
deals with big data and is exposed to noises or perturbations. Nowadays, it
is impossible to use clean data without noise as input when training real-data
because it trains a huge amount of data. Therefore, it is meaningful to find a
generalization bound considering input noise.

Beside, Szegedy et al. [13] observed a phenomenon that caused a network to
output incorrect classifications due to the application of a certain hardly per-
ceptible perturbation, which was found by maximizing the networks prediction
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error. This means that machine learning models can make incorrect predictions
with high confidence by adding adversarial perturbations to inputs. In recent
years, the generalization of a robust learning has been investigated to obtain a
better understanding of this phenomenon.

It would be great if we could find a generalization bound that can cover
all kinds of noises or perturbations at once. But first, the research should
be conducted to find a robust generalization bound for each case, such as
whether input noise is random or intentional or not. In this paper, we present
a generalization bound of classifiers with input noise using margin loss function
and related terms to perturbation of input and parameters. For this, we assume
that the input noises are random values following Gaussian distribution and
apply the PAC-Bayesian framework. The PAC means ‘Probably Approximately
Correct’ [4]. PAC is one of the methods to measure the performance of a model
in theory, and although it is difficult to use it in practically measuring the
performance of a model, it is conceptually possible to explain why a particular
model is better and when the performance of a model is good and when it is
bad. Thus, it provides the relationship between the complexity of the learning
algorithm and the ability it can achieve. And the ability is explained by the
generalization error, the gap between theoretical error and empirical error, and
tells a guarantee for learning.

The PAC-Bayes bounds approach proposed by Mcallester [7] contained
bounds of error rates in classification. More recent studies combined PAC-
Bayesian analysis and margins by Lanford et al. [6] and Mcallester [8]. In
addition, under the assumption that changes in network output due to weight
perturbations are bounded, Neyshabur et al. [10] applied the PAC-Bayes anal-
ysis for feedforward neural networks.

In neural networks, the margin is associated with various tasks. Bartlett et
al. [2] suggested that the generalization gap, i.e., the difference between train-
ing and test errors, is strongly related to the normalized product of the spectral
norms of wight matrices. In addition, they found that normalized margin dis-
tribution converge, which led to investigations into margin distribution and
margins for hidden layers. Two studies of Jiang et al. [5] and Elsayed et al. [3]
focused on reducing the generalization gap. These studies proposed using mar-
gin distribution at hidden layers and a method to approximate margins. The
papers proposed the coefficient of determination to predict the generalization
gap and a flexible loss function that can establish a large margin, respectively.
Shen-Huan et al. [12] proposed a new loss function that utilized the margin dis-
tribution and found the generalization bound based on noise stability proposed
by Arora et al. [1] and the PAC-Bayesian framework proposed by Neyshabur
et al. [10].

We focus on the bounds that are expressed in the margin. If the output
change due to the perturbations of weight parameters can be expressed using
the margin loss function, a case could be made for input noise perturbations.
To know the sensitivity of classifier to input noise, we want to see how robust
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classification is to input noise through generalization bounds. The generaliza-
tion bounds are expressed assuming the worst case, this study is about how
much network sensitivity and margins can affect as much as possible. There-
fore, it shows a generalization bound according to the fixed number of samples
under specific conditions of input noise and margin. In this paper, we find
out what the additional generalization term due to input noise has to do with
margin.

And, in neural network, we observe that even though the adversarial input
perturbation is non-randomly added, and different from our random noise, the
additional generalization bounds caused by input noises are similar in that they
rely on the product of the input dimension and norms of input and weights as
in the adversarial example. It appears that whether or not the perturbations
are random is not consequential, because the worst case is considered when
we compute the generalization bounds. To find a better robust generalization,
other measures are required to handle weight sensitivity or the distribution of
input data and these were briefly discussed in the last part of this paper.

1.1. Preliminaries

If hypothesis determines how output is determined for each input, one pur-
pose of machine learning is to approximate the distribution of hypothesis as
closely as possible. Let’s denote the trained distribution is S by learning and
actual distribution we are looking for is D. The generalization bound tells the
maximal difference between these two distributions.

The generalization bounds was first expressed using Kullback-Leibler diver-
gence in the PAC-Bayesian framework by Mcallester [8]. It tells a capacity of
variations of parameters stochastically. This is necessary to calculate perturba-
tions of weight parameters and the method of finding KL divergence depends on
the type of classification. We use the method by Mcallester for linear classifica-
tion, and Neyshabur et al. [10] method for multi-classification. The definition
of KL divergence is as a follows.

Kullback-Leibler divergence. For two distributions P and Q, the kullback-
Leibler divergence is defined as follows:

KL(Q‖P ) =
∑
x

q(x) log
q(x)

p(x)
,

where p(x) and q(x) are the probability density functions of P and Q, respec-
tively. The KL divergence is a measure of the distance between distributions
P as a prior and Q as a posterior.

Mcallester [9] and Langford and Shawe-Taylor [6] attempted to use a PAC-
Bayesian approach for a SVM or linear binary classifications. In those stud-
ies, for networks with weight vectors, Kullback-Leibler divergence is computed



220 H. CHOE, H. KOH, AND J. LEE

using fat shattering arguments. In addition, those studies assume weight vec-
tors are unit-variance isotropic multivariate Gaussian. But recently, the PAC-
Bayesian approach is expanded to neural networks with ReLU activation func-
tions. Neyshabur et al. [10] assumed the perturbations of weights are Gaussian
random values, and, using this assumption, KL divergence is computed. How-
ever, the type of perturbation does not matter if it satisfies the bound on the
changes in the output of the networks.

For convenience, we sometimes denote the classifier to fw where w is the
parameter of classifier. And in some case, the distribution followed by the
parameter is written in subscripts. For example, fQ means a classifier with
parameter w distributed Q, FQ means a family of these classifiers. And we

indicate that L is the loss function of the classifier and L̂ is the experimental
version.

The PAC learning is a framework for mathematical analysis of machine
learning, in which the learner receives samples and selects the hypothesis from
a specific class of possible functions [4]. The introduction of the concept of
computational complexity theory to machine learning is an impressive part of
the PAC framework. In particular, learners are expected to find efficient func-
tions, and learners themselves must implement efficient procedures. Therefore,
the goal of the PAC framework is for a function chosen with high probability
(the “probably” part) to have a low generalization error (the “approximately
correct” part). The PAC-Bayesian framework was based on the next theorem.

Theorem 1.1 (PAC-Bayesian Theorem). For any probability distribution
(measure) on a possibly uncountable set C and any measurable loss function
L we have the following where Q ranges over all distributions (measures) on C.
Then, with probability at least 1− δ over the choice of sample set we have

(1) KL(L̂(FQ)‖L(FQ)) ≤
KL(Q‖P ) + ln m

δ

m− 1
,

where m is the sample size and P is a fixed prior distribution.

In the above theorem, P and Q are the unknown target distribution and the
trained distribution, respectively. We can use the Kullback-Leibler divergence
to get the distance between the error of the empirical distribution L̂(FQ) and
the error of the theoretical distribution L(FQ). Since, we want the loss of the
target distribution L(FQ) to be bound using ε, which is expressed as follows:
With the probability at least 1− δ over the choice of the sample we have that
the following holds simultaneously for all w ∈ Rn with ‖w‖ = 1 and γ ≥ 0:

L0(FQ) ≤ sup

{
ε : KL(L̂γ(FQ)‖ε) ≤

KL(Q‖P ) + ln m
δ

m− 1

}
.
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We have the inequality KL(q‖p) ≥ (q − p)2/(2q), and using statement that
if KL(q‖p) ≤ x, then p ≤ q+

√
2qx+2x, the inequality expressed more clearly.

(2) L0(fw) ≤ L̂(fw) +

√
2L̂(fw)(KL(w||P ) + ln m

δ )

m− 1
+

2(KL(w||P ) + ln m
δ )

m− 1
.

Neyshabur et al. [10] expand the PAC-Bayesian framework to margin-based
bounds for neural networks.

Lemma 1.2. Let fw be any predictor with parameter w. For all γ > 0, with
probability of at least 1−δ over the training data of size m, we have the following
margin bounds:

(3) L0(fw) ≤ L̂γ(fw) + 2

√
2(KL(w||P ) + ln 2m

δ )

m− 1
.

1.2. Outline of the paper

We find margin-based generalization bounds with input noises of the linear
model for binary classification and the neural network for multi-classifications
in Sections 2 and 3, respectively. Before finding the bounds in each section, we
set about the model parameters and input noises. Especially in neural network
for multi classification, we compare the bounds with the previous results for
adversarial example and describe the need for a new approach.

2. Binary linear classification

In this section, we consider the binary linear classification. Our goal is to
express a generalization bound for classification with input noises using the
PAC-Bayesian framework. Therefore, the result of this section is the boundary
of the 0 − 1 loss function of the binary linear classification using the margin
loss function and additional terms. This generalization bound provides a case
where input noise, a Gaussian random value, is added. Thus we can obtain
information about the boundary conditions that are robust to input noise from
this result.

We start with a model description.
Assume that the input domain is X1,n = {x ∈ Rn : ‖x‖2 = 1}. We consider

a linear classifier with parameter w has unit norm, i.e., ‖w‖2 = 1. Linear
classification uses a linear product of input and parameter w ·x, so the output
y is naturally in [−1, 1] ∈ R but the target is Y = {−1, 1}. We assume that
w · x 6= 0 for all x, and then we predict 1 or −1 depending on whether the
result of the dot product of input x and parameter w is positive or negative,
respectively. Thus for given sample set S = (X ,Y), if w · x and y has same
sign, the sample data is classified correctly.
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We need information about how accurate the classification is for the sample
data, and the loss function tells us. The 0− 1 loss `0 is defined

`0(w, (x, y)) =

{
0 if classification is correct,

1 if classification is incorrect.

The empirical 0− 1 loss function L̂0 is defined as

L̂0(w,S) =
1

m

m∑
i=1

`0(w, (xi, yi))

and 0− 1 loss function L0 is L0(w,S) = Pr(x,y)∼D[y(w · x) ≤ 0].
Since w · x 6= 0 for all x, there always is a gap between the value w · x and

the base line y = 0. Margin is the minimum value of these intervals for all
inputs. Using this margin, margin loss function is defined.

Margin loss function. For a binary-classifier fw(x) = w · x, the margin loss
function is defined as follows:

Lγ(w,S) = Pr
(x,y)∼D

[y(w · x) ≤ γ].

The empirical margin loss function is denoted by L̂γ . If γ = 0, it corresponds

to the classification loss L0 and L̂0 represent the expected loss function and
the training loss function, respectively.

In next section, we set input noise and then we start the process of finding
a generalization bound for binary linear classification using PAC-framework.

2.1. Generalization bound with input noises

We want to express a generalization bound for classification with input noises
and this generalization bound includes terms for margin. Initially, we started
with the idea that margin can absorb some perturbations from inputs. We
assume that the norm of input noise is bounded to the magnitude of margin.
And we need to set the relation between the norm of the perturbation and the
magnitude of the margin.

First, we assume that input noises are as follows.

The input noise. For noise vector u, we assume that the input with noise is
x̃ = x+u

‖x+u‖2 and then x̃ has norm 1. And here, we assume that each element of

u is a random real number independent identically distributed N (0, σ2) which
is a Gaussian distribution with mean 0 and variance σ2. And for convenience,
we denote that the classifier added input noise u as f̃w = w · x̃ = w · x+u

‖x+u‖2 ,

and let F̃w = {f̃w|f̃w = w · x̃}.
To find the bound of the 0 − 1 loss for perturbation case with margin loss

term, we use fat shattering arguments in [6].
We assume that ‖w‖ = 1 in this section. We assume that w has the dis-

tribution P whose elements have same value in all directions and the value of
elements is a Gaussian random variable. For generalization, we have to get
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about random weight w′ which is not exactly same with w but quite similar
with w. A measurement of the similarity can be considered to the inner prod-
uct of the two vectors. So, we consider w′ · w ≥ µ for some µ and w′ has
distribution Q. Then KL(Q‖P ) = ln 1

Φ(µ) where Φ (µ) is the probability of the

Gaussian random variable exceeding µ (see [9]).

Lemma 2.1. Let an input noise vector u be u ∼ N(0, σ2I). For γ ≥ 0, if
the magnitude of noise ‖u‖2 < γ 1, there exists a constant c such that ‖u‖2 =
(1− c)γ where 0 < c ≤ 1. For w ∈ Rn with ‖w‖ = 1, and for µ ≥ 0, we have
the following.

L̂0(F̃Q) ≤ L̂γ(FP ) + Φ (cµγ) ,

where Φ(z) is the probability that a unit-variance Gaussian random variable
exceeds z.

Proof. For x ∈ Rn with ‖x‖ = 1, we let x̃ = x + u. Then, separate the input
variable x̃ to two components; x̃ = x̃‖ + x̃⊥ where x̃‖ is the component of x̃
parallel to w and x̃⊥ is x̃−x̃‖, i.e., the component of x̃ perpendicular to w. For
a fixed γ-safe point, consider two orthogonal components x̃‖, x̃⊥ and random
weight vectors w′. If w′ ·w ≥ µ, we have the following:

Pr
w′∼Q

[ y(w′ · x̃) ≤ 0 ] = Pr
w′∼Q

[ −y(w′ · x̃⊥) ≥ y(w′ · x̃‖) ]

= Pr
w′∼Q

[ −y(w′ · x̃⊥) ≥ y(w · x̃)(w′ ·w) ]

= Pr
w′∼Q

[ −y(w′ · x̃⊥) ≥ y((w · x) + (w · u))(w′ ·w) ]

≤ Pr
w′∼Q

[ −y(w′ · x̃⊥) ≥ (γ + (w · u))µ ]

≤ Pr
w′∼Q

[ −y(w′ · x̃⊥) ≥ (γ − ‖u‖2)µ ]

= Φ

(
(γ − ‖u‖2)µ

‖x̃⊥‖2

)
≤ Φ ((γ − ‖u‖2)µ) .

Since the magnitude of noise vector u is smaller than margin γ, there exists
a constant 0 < c ≤ 1 such that ‖u‖2 = (1−c)γ. Then, the following is satisfied.

L̂0(F̃Q) = E(x,y)∼S

[
Pr

w′∼Q
[y(w′ · x̃) ≤ 0]

]
≤ L̂γ(FP ) + E(x,y)∼S

[
Pr

w′∼Q
[y(w′ · x̃) ≤ 0] | y(w · x) > γ

]
≤ L̂γ(FP ) + Φ (µ(γ − ‖u‖2))

1The ‖u‖2 can be unbounded, but we only consider very small input perturbations. Be-

cause we started this study with that an adversarial attack with a very small perturbation
can lead to different classification results (in this case, the l∞ error is limited to ε). These

are described in the last paragraph of Chapter 3.2.
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≤ L̂γ(FP ) + Φ (cµγ) . �

In the above proof, the last inequality holds for γ ≤ 1, but that condition is
enough. Since norms of w and x are bounded by 1, thus their inner product
is bounded by 1, too. So, we consider the case where the margin is less than 1
and this makes sense.

If c = 1, then this is the case when there is no noise. And always Φ (cµγ) ≥
Φ (µγ) is satisfied. The c is caused by input noise, thus the difference of Φ (cµγ)
and Φ (µγ) is the extra term from input noise that we want to find.

Before the next step, we learn more about noise from the following corollary.

Corollary 2.2. If we compare the case with and without noise, the difference
is whether there is the term y(w · u). The original result is determined by the
sign of y(w ·x). Thus the input noise interferes with the result when (w ·u) has
the opposite sign with (w · x). Under the setting x̃ = x̃‖ + x̃⊥ in the proof of
above lemma, it can be said that only the component in the (opposite) direction
parallel to w in noise affects the result.

Now, using the theorem proposed by Langford et al. [6] and Mcallester [9],
we can find the following margin-based generalization error bounds for the
predictor added input noises: Let an input noise vector u be u ∼ N(0, σ2I).
With the probability at least 1− δ over the choice of the sample we have that
the following holds simultaneously for all w ∈ Rn with ‖w‖ = 1, µ ≥ 0 and
γ ≥ 0.

(4) L0(FQ) ≤ sup

{
ε : KL(L̂γ(FQ) + Φ (cµγ) ‖ε) ≤

KL(Q‖P ) + ln m
δ

m− 1

}
.

Theorem 2.3. Let the binary classifier F = {fw | fw = w · x}. Then, with
probability at least 1− δ, we have

L0(F̃) ≤ L̂γ(F) +
m1−c

mγ2
+

√
2

(
L̂γ(F) +

m1−c

mγ2

) ln +mγ2

γ2 + 3
2 lnm+ ln 1

δ + 3

m− 1

+ 2

ln +mγ2

γ2 + 3
2 lnm+ ln 1

δ + 3

m− 1
.

Proof. In [9], µ is defined as a function of γ such that µ(γ) =

√
2 lnmγ2

γ , and

thus Φ(γµ(γ)) ≤ 1
mγ2 . Here, we have Φ(cµγ) which is needed to be bounded.

Φ (cµγ) ≤ exp{−c2γ2µ(γ)2/2}
= exp{−c2 ln (mγ2)}

=
1

(mγ2)c2

=
(mγ2)1−c2

mγ2
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≤ (mγ2)1−c

mγ2
.

�

In the above theorem, the smaller the noise c the closer it is to 1, and
then (mγ2)1−c is close to 1, too. Compared with the case of without noises,
(mγ2)1−c > 1 and it is a loose generalization bound.

The more simple inequality is in the following corollary.

Corollary 2.4. The above theorem can be expressed simply:

L0(F̃) ≤ α+
√

2αβ + 2β,

where

α = L̂γ(F) +
(mγ2)1−c

mγ2
,

β =

ln +mγ2

γ2 + 3
2 lnm+ ln 1

δ + 3

m− 1
.

As in the previous work, we can express the generalization boundary in the-
orem to more clearly as follows:

(5) L0(F̃) ≤ L̂γ(F) +
(mγ2)1−c

mγ2
+O

√ ln +mγ2 + ln δ
m

mγ2

 .

Without noises, the margin-based generation bound is expressed L0(F) ≤

L̂γ(F)+O
(√

KL(Q‖P )+ln δ
m

m

)
, and it is from L0(F) ≤ L̂γ(F)+O

(√
β
)
. How-

ever, we use the term (mγ2)1−c

mγ2 to indicate the effect of input noise. As a result,

the generalization bounds increases as margin and the number of input sam-
ples containing noise increases exponentially inversely proportional to the noise
level. This means that the more exposure to noise, the looser the boundary.

3. The neural networks for multi-class classification

In this section, we deal with the neural network for multi classification.
As in the previous section, our goal is to express a generalization bound for
classification with input noises using PAC-Bayesian method. The result of
this section will be the boundary of the 0 − 1 loss of the neural network for
multi-classification using the margin loss function and extra terms. This gen-
eralization bound provides a case of input with Gaussian random noise. Thus
we can obtain information about a robust boundary conditions to input noise
from this result.

Assume that the input domain is XB,n = {x ∈ Rn : |x|2 ≤ B}. We consider a
neural network that classifies input into k-classes. Therefore, its output domain
will be Rk. Let fw(x) : XB → Rk be the function for a d-layer feedforward
neural network with parameters w = {Wi}di=1. More specifically, fw(x) =
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Wdφ(Wd−1 · · ·φ(W1x)). Here, we assume the activation function φ is the ReLU
function. The ReLU function is piecewise linear and has the Lipschitz property.

Multi-classification has a different output format than binary classification.
In binary classification, the output was a scalar, but in multi-classification it is
a k-dimensional vector. Thus margin is defined in a different way than binary
classification. After each input through the weight parameters, the class of the
input is determined by the index having the greatest value. In this process, we
call the deference of the biggest and the second value is margin, i.e., the margin
γ is fw(x)[y]−maxi 6=y fw(x)[i], where fw(x)[i] is the i-th index of fw(x) and y is
determined index. According to the definition of margin in multi-classification,
margin loss function is also defined unlike binary classification.

Margin loss function. For a multi-classifier fw, the margin loss function is
defined as follows:

Lγ(fw) = Pr
(x,y)∼D

[fw(x)[y]−max
i 6=y

fw(x)[i] < γ],

where fw(x)[i] is the i-th index of the output when input x and y is target index.

The empirical margin loss function is denoted by L̂. If γ = 0, it corresponds to
the classification loss L0 and L̂0 represent the expected loss function and the
training loss function, respectively.

For neural networks for multi-classification, the Kullback-Liebler branch con-
dition was calculated in [10] using the assumption that the weight parameter’s
perturbations are Gaussian random values. Using this method, we examine
the difference of generalization bounds caused by injecting random noises in
input. Then the generalization bounds means how flexible the network is to
input noises. And we considered the idea that margin can absorb some per-
turbations from inputs. Therefore, we consider that the norm of input noise
is bound to the magnitude of margin. Thus, we need the information about
the relation between the norm of the perturbation and the magnitude of the
margin. There issues are discussed in the first part of the next section.

3.1. Generalization bounds with input noises

We define input noise as follows.

Input perturbation. For input perturbation vector u ∈ Rn, we note that
x̃ = x + u. Here, we assume that each element of u is a random number
independent identically distributed N (0, σ2

u). For convenience, sometimes we

denote that the classifier added input perturbation u as f̃w = fw(x + u), i.e.,

f̃w = Wnφ(Wn−1 · · ·φ(W1x̃)) where x̃ = x + u.
In this paper, we examine the effect of margin on training a network with

input perturbation. Our goal is to find a generalization error bound for classifier
added input perturbation in terms of the margin-based generalization error
bound using the method proposed in [10]. The following lemma is the first
step.
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Lemma 3.1. Let fw(x) : X → Rk be any k-classifier that has parameters w,
let P be any distribution on those parameters that is independent of the training
data. Let f̃w = fw(x + u) where u is an input perturbation. Then, for any
γ, δ > 0, with probability of at least 1 − δ over the training set of size m, for
any w, and any random perturbation u such that Pru[maxx∈X (|fw+v(x + u)−
fw(x)|∞) < γ

4 ] ≥ 1
2 , we have:

(6) L0(fw) ≤ L̂γ(fw) +O

(√
KL(w + v‖P ) + ln m

δ

m

)
.

Proof. Let w′ = w + v and let Sw be the set of perturbations that satisfies
with the following:

Sw = {w′ : max
x∈X

(|fw+v(x + u)− fw(x)|∞) <
γ

4
}.

Let Q̃ be a new distribution over fw̃ where w̃ is restricted to Sw. The
probability density function of Q̃ is:

q̃(w̃) =
1

Z

{
q(w̃) for w̃ ∈ Sw,

0 otherwise,

where Z is a normalizing constant.
By trigonometric inequality, we also have |fw′(w + u) − fw(x)|∞ < γ

4 . By
the definition of Sw, for any w̃ ∈ Sw and x ∈ XB,n,

max
i,j∈[k]

| (|fw̃(x + u)[i]− fw̃(x + u)[j]|)− (|fw(x)[i]− fw(x)[j]|) | < γ

2
.

Then, we have

L0(fw) ≤ L γ
2
(f̃w̃), L γ

2
(f̃w̃) ≤ Lγ(fw).

Thus,

L0(fw) ≤ Ew̃[L γ
2
(f̃w̃)]

≤ Ew̃[L̂ γ
2
(f̃w̃)] + 2

√
2(KL(w̃‖P ) + ln 2m

δ )

m− 1

≤ L̂γ(fw) + 2

√
2(KL(w̃‖P ) + ln 2m

δ )

m− 1

≤ L̂γ(fw) + 4

√
2(KL(w′‖P ) + ln 6m

δ )

m− 1
.

The last inequality is from the normalized constant Z. �

We began with the idea that some perturbations can be converted into mar-
gin. As a natural line of thinking, we must have information about the rela-
tionship between the magnitude of perturbations and the margin.
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Lemma 3.2. Let fw(x) : XB,n → Rk be a d-layer neural network with ReLU
activations for any d > 0. Then for any w, and x ∈ XB,n, and any perturba-
tions v = {Vi}di=1 and u ∈ Rk such that ‖Vi‖2 ≤ 1

d‖Wi‖2, the change in the
output of the network can be bounded as follows:

(7)

|fw+v(x + u)− fw(x)|2

≤ e

i+1∏
j=1

‖Wj‖2

i+1∑
j=1

‖Vj‖2
‖Wj‖2

 ‖x‖2 + ‖u‖2

 ,
where e is the natural logarithm.

Proof. Let f iw(x) be the output of the i-th layer. We prove the inequality using
induction.

Assume that for i ≥ 0,

∆i = |f iw+v(x + u)− f iw(x)|2

≤
(

1 +
1

d

)i i∏
j=1

‖Wj‖2

 i∑
j=1

‖Vj‖2
‖Wj‖2

 ‖x‖2 + ‖u‖2

 .
If i = 0: ∆0 = ‖u‖2 which satisfies the assumed inequality.
For i ≥ 1:

∆i+1 = |(Wi+1 + Vi+1) φi(f
i
w+v(x + u))−Wi+1 φi(f

i
w(x))|2

≤ |(Wi+1 + Vi+1) φi(f
i
w+v(x + u))− (Wi+1 + Vi+1) φi(f

i
w(x))|2

+ |Vi+1 φi(f
i
w(x))|2

≤ (‖Wi+1‖2 + ‖Vi+1‖2) |φi(f iw+v(x + u))− φi(f iw(x))|2
+ ‖Vi+1‖2|φi(f iw(x))|2

≤ (‖Wi+1‖2 + ‖Vi+1‖2)∆i + ‖Vi+1‖2|(f iw(x))|2

≤
(

1 +
1

d

)
‖Wi+1‖2 ∆i + ‖Vi+1‖2

 i∏
j=1

‖Wj‖2

 ‖x‖2.
The last inequality is from

|(f iw(x))|2 = |Wi(φ(Wi−1 · · ·φ(W1(x))))|2 ≤
(∏i

j=1 ‖Wj‖2
)
‖x‖2. Substitut-

ing ∆i,

∆i+1

≤
(

1 +
1

d

)
‖Wi+1‖2

(
1 +

1

d

)i i∏
j=1

‖Wj‖2

 i∑
j=1

‖Vj‖2
‖Wj‖2

 ‖x‖2 + ‖u‖2


+ ‖Vi+1‖2

 i∏
j=1

‖Wj‖2

 ‖x‖2



MARGIN-BASED GENERALIZATION WITH INPUT NOISE 229

=

(
1 +

1

d

)i+1
i+1∏
j=1

‖Wj‖2

 i∑
j=1

‖Vj‖2
‖Wj‖2

 ‖x‖2 + ‖u‖2


+
‖Vi+1‖2
‖Wi+1‖2

i+1∏
j=1

‖Wj‖2

 ‖x‖2
≤
(

1 +
1

d

)i+1
i+1∏
j=1

‖Wj‖2

i+1∑
j=1

‖Vj‖2
‖Wj‖2

 ‖x‖2 + ‖u‖2

 .
Here,

(
1 + 1

d

)i+1
< e, it satisfies the assumption, thus the inequality is

proved. �

Here, we let β =
(∏d

i=1 ‖Wi‖2
)1/d

. A network with normalized weights

W̃i = β
‖Wi‖2Wi has the same losses as a network with weights ‖Wi‖2. Thus

we can use β rather than the actual norm β̃ as required and it is sufficient
if |β − β̃| < 1

dβ is satisfied. We will consider a fixed β̃ and use the relation
1
eβ

d−1 ≤ β̃d−1 ≤ eβd−1.
By setting, the inequality (7) can be written as:

(8) |fw+v(x + u)− fw(x)|2 ≤ eβd
B
β

d∑
j=1

‖Vj‖2 + ‖u‖2

 .
Under the assumption that the elements of Vi and ui are Gaussian dis-

tributed random variables and their norms are bounded by 1
dβ and B, respec-

tively, we consider that the variances have the following relation:

(9) σu ∼
dB

β
σv.

Using this condition, we can compute the KL-term with respect to the vari-
ance of weights.

The bound for ‖Vi‖2 we use the following inequality [14]:

Pr
Vi∼N(0,σvI)

[‖Vi‖2 > t] ≤ 2het
2/2hσ2

v

and Chebyshev’s inequality Pru∼N(0,σ2
uI)

[|u|2 > s] ≤ nσ2
u

s2 . For the condition

with probability of at least 1
4 for each, s and t are chosen as follows:

(10)
|u|2 ≤ 2σu

√
n,

‖Vi‖2 ≤ σv
√

2h ln 8dh,

for 1 ≤ i ≤ d. Thus, the inequality (8) is:

|fw+v(x + u)− fw(x)|2 ≤ eβd
[
Bd

β
σv
√

2h ln 8dh+ 2σu
√
n

]
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≤ eβd−1
(
dBσv

√
2h ln 8dh+ 2dBσv

√
n
)

≤ edBβd−1σv(
√

2h ln 8dh+ 2
√
n).

The first inequality is from βd−1 ≤ eβ̃d−1 and the equality is from the
relation (9). Now, using the assumption of the perturbation bound γ

4 , we can
derive the formula for σv:

(11) σv =
γ

4edBβd−1(
√

2h ln 8dh+ 2
√
n)
.

Finally, we can postulate the following theorem.

Theorem 3.3. Let fw(x) : XB,n → Rk be a k-classifier where the parameters

are w, and f̃w = fw(x + u) where u ∈ Rn is an input noise. For any γ, δ > 0
and u, with probability of at least 1− δ over a training set of size m, we have:

L0(f̃w) ≤ L̂γ(fw) +O

√B2d2(h ln dh+ n)M + ln dm
δ

mγ2

 ,

where M = Πd
i=1‖Wi‖22

∑d
i=1

‖Wi‖F
‖Wi‖22

.

Proof. Using the equation (11), the Kullback-Leibler divergence term is bound-
ed by

KL(w + v‖P ) ≤ ‖w‖
2
2

2σ2
v

=
16e2d2B2β̃2d−2(

√
2h ln 8dh+ 2

√
n)2

2γ2

d∑
i=1

‖Wi‖2F

≤ O

(
B2d2β2d(h ln dh+ n)

γ2

d∑
i=1

‖Wi‖F
β2

)

≤ O

(
B2d2(h ln dh+ n)Πd

i=1‖Wi‖22
γ2

d∑
i=1

‖Wi‖F
‖Wi‖22

)
.

We applied (
√
a+
√
b)2 ≤ O(a+ b) to the first inequality.

By Lemma 3.1, for any γ, δ > 0 and u, β̃, with probability at least 1 − δ
over the training set of size m, for any w such that |β − β̃| < 1

dβ, we have:

L0(f̃w) ≤ L̂γ(fw) +O

√B2d2(h ln dh+ n)M + ln m
δ

mγ2

 ,

where f̃w(x) = fw(x + u) and M = Πd
i=1‖Wi‖22

∑d
i=1

‖Wi‖F
‖Wi‖22

.

Here, |β− β̃| < 1
d

(
γ

2m

)1/d
is a sufficient condition for w such that |β− β̃| <

1
dβ. Thus we can use a cover of size dm

1
2d , and the left term ln dm

δ of the
theorem statement is chosen. �
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Without input noise, the margin-based generalization bound is as follows:

L0(fw) ≤ L̂γ(fw) +O

√B2d2h ln (dh)M + ln dm
δ

mγ2

 .

Thus, we can observe that the generalization bound with input noise is relies
on (input dimension) × (norms of input and weights); the added term caused
by input noise.

3.2. Comparison to adversarial example

We compare our bound with the bounds in [15], those are based on [2] and
[10], respectively; they showed the margin-based generalization bounds using
different tools, but their results are similar.

Focusing on only effect from the input noises, our result is related to:

n1/2‖W1‖F ‖W2‖F
γ
√
m

for two-layer neural networks. Yin et al. [15] showed the generalization bounds
for `∞ adversarial attacks using Rademacher complexity. Their results are
related to:

• ‖W‖
T
2,∞k

3/2n1/2

γ
√
m

for linear multi-class classifiers where W is from fW (x) =

Wx,

• ‖W1‖1‖WT
2 ‖2,1

γ
√
m

for two-layer neural networks for binary-classifications.

The norm of weights is significant. The existence of the terms about the
dimensions of input and output depends on the type of norm. Here, we only
consider a two-layer classifier; however the number of weights is not significant.
In addition, although the PAC-Bayesian tool is a simple approach, the specific
classification criteria do not matter.

It appears that whether or not the perturbations are random is not conse-
quential, because the worst case is considered when we compute the general-
ization bounds. For example, under the `∞ adversarial attack, the difference
ε for each coefficient is bounded by

√
nε in `2-norm sense as similar with in-

equality (7) which contains input noise u bound, and the norm appears the
generalization bounds.

4. Conclusion

We show the generalization bounds increases as margin increases exponen-
tially inversely proportional to the noise level in binary classification. Also,
it was confirmed that the more the input is exposed to noise, the greater the
generalization bound. In multi-classification, we show the generalization bound
with input noise increases in proportion to the product of input dimension and
norms of input and weights. This result is similar to the case of the adversarial
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example considering the norm size of noise, which is considered because the
generalization bound considers the worst case.

Schmidt et al. [11] showed that, for the Gaussian and Bernoulli models, the
classification error rate differs according to the input data model. The dif-
ference is the exponential coefficient of the input dimension. Based on their
results, they suggested more prior information is required. Jiang et al. [5] pre-
sented a new loss function inspired by the theory of large margin and conducted
experiments that showed robustness for both Gaussian noise and adversarial
perturbations. These two papers considered margin in hidden layers; we think
that tracking margin from the output to the hidden layers would provide a bet-
ter understanding of how neural networks work and enable more meaningful
robust adversarial generalization.

Zhang et al. [16] showed the result from experiments that statistical learning
theory has not yet been able to fully explain generalization. Thus various and
new attempts to close the gap between theory and experience are needed. This
remains our future work.
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