• Title/Summary/Keyword: Mathematical Models

Search Result 1,785, Processing Time 0.029 seconds

GLOBAL STABILITY OF THE VIRAL DYNAMICS WITH CROWLEY-MARTIN FUNCTIONAL RESPONSE

  • Zhou, Xueyong;Cui, Jingan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.555-574
    • /
    • 2011
  • It is well known that the mathematical models provide very important information for the research of human immunodeciency virus type. However, the infection rate of almost all mathematical models is linear. The linearity shows the simple interaction between the T-cells and the viral particles. In this paper, a differential equation model of HIV infection of $CD4^+$ T-cells with Crowley-Martin function response is studied. We prove that if the basic reproduction number $R_0$ < 1, the HIV infection is cleared from the T-cell population and the disease dies out; if $R_0$ > 1, the HIV infection persists in the host. We find that the chronic disease steady state is globally asymptotically stable if $R_0$ > 1. Numerical simulations are presented to illustrate the results.

Mathematical Modeling of the Roundness for Plastic Injection Mold Parts with Complicated 3D curvatures (복잡한 3차원 곡면을 가지는 플라스틱 사출 성형품을 위한 진원도의 수학적 모델링)

  • Yoon, Seon Jhin
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.6-11
    • /
    • 2019
  • In this study, we constructed the mathematical model to evaluate the roundness for plastic injection mold parts with complicated 3D curvatures. Mathematically we started off from the equation of circle and successfully derived an analytical solution so as to minimize the area of the residuals. On the other hand, we employed the numerical method the similar optimization process for the comparison. To verify the mathematical models, we manufactured and used a ball valve type plastic parts to apply the derived model. The plastic parts was fabricated under the process conditions of 220-ton injection mold machine with a raw material of polyester. we experimentally measured (x, y) position using 3D contact automated system and applied two mathematical methods to evaluated the accuracy of the mathematical models. We found that the analytical solution gives better accuracy of 0.4036 compared to 0.4872 of the numerical solution. The numerical method however may give adaptiveness and versatility for optional simulations such as a fixed center.

The development of Governor models for implementation into EMTDC and the verification of Governor models using GSTEP (EMTDC용 조속기 모델 개발 및 GSTEP을 이용한 검증)

  • Hur, J.;Kim, D.J.;Yoon, J.Y.;Moon, Y.H.;Lee, J.;Yoon, Y.B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.71-74
    • /
    • 2001
  • In general, the PSS/E program based on RMS mathematical models is used for analyzing the steady state and transient stability phenomena of full-scale large power system. Whereas, the EMTDC program unlike PSS/E, studies the specific reduced small-scale power systems as a basis of instantaneous value mathematical models and used to analyze the Electro-Magnetic transient characteristics. The PSS/E provides various control models such as exciter, governor and PSS models, But there are few control models in EMTDC. In this paper, we developed EMTDC models for governor which have been applied in KEPCO system. The EMTDC models are developed by examining PSS/E control block and using User Define Model in addition to default.lib provided by EMTDC. we verify the correctness of developed governor models with PSS/E and EMTDC simulation results using Governor Step(GSTEP) method.

  • PDF

The origins and evolution of cement hydration models

  • Xie, Tiantian;Biernacki, Joseph J.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.647-675
    • /
    • 2011
  • Our ability to predict hydration behavior is becoming increasingly relevant to the concrete community as modelers begin to link material performance to the dynamics of material properties and chemistry. At early ages, the properties of concrete are changing rapidly due to chemical transformations that affect mechanical, thermal and transport responses of the composite. At later ages, the resulting, nano-, micro-, meso- and macroscopic structure generated by hydration will control the life-cycle performance of the material in the field. Ultimately, creep, shrinkage, chemical and physical durability, and all manner of mechanical response are linked to hydration. As a way to enable the modeling community to better understand hydration, a review of hydration models is presented offering insights into their mathematical origins and relationships one-to-the-other. The quest for a universal model begins in the 1920's and continues to the present, and is marked by a number of critical milestones. Unfortunately, the origins and physical interpretation of many of the most commonly used models have been lost in their overuse and the trail of citations that vaguely lead to the original manuscripts. To help restore some organization, models were sorted into four categories based primarily on their mathematical and theoretical basis: (1) mass continuity-based, (2) nucleation-based, (3) particle ensembles, and (4) complex multi-physical and simulation environments. This review provides a concise catalogue of models and in most cases enough detail to derive their mathematical form. Furthermore, classes of models are unified by linking them to their theoretical origins, thereby making their derivations and physical interpretations more transparent. Models are also used to fit experimental data so that their characteristics and ability to predict hydration calorimetry curves can be compared. A sort of evolutionary tree showing the progression of models is given along with some insights into the nature of future work yet needed to develop the next generation of cement hydration models.

Education and Application of Modeling on 3D Structure using Geogebra (지오지브라를 이용한 3차원 구조물의 모델링 교육과 응용)

  • Chung, Tae-Eun;Kim, Tae-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.93-103
    • /
    • 2015
  • In this study, we organize and explain various ways to construct 3D models in the 2D plane using Geogebra, mathematical education software that enables us to visualize dynamically the interaction between algebra and geometry. In these ways, we construct three unit vectors for 3 dimensions at a point on the Cartesian coordinates, on the basis of which we can build up the 3D models by putting together basic mathematical objects like points, lines or planes. We can apply the ways of constructing the 3 dimensions on the Cartesian coordinates to modeling of various structures in the real world, and have chances to translate, rotate, zoom, and even animate the structures by means of slider, one of the very important functions in Geogebra features. This study suggests that the visualizing and dynamic features of Geogebra help for sure to make understood and maximize learning effectiveness on mechanical modeling or the 3D CAD.

Teaching and Learning Models for Mathematics using Mathematica (I)

  • Kim, Hyang-Sook
    • Research in Mathematical Education
    • /
    • v.7 no.2
    • /
    • pp.101-117
    • /
    • 2003
  • In this paper, we give examples of models we have created for use in university mathematics courses. We explain the concept of linear transformation, investigate the roles of each component of 2 ${\times}$ 2 and 3 ${\times}$ 3 transformation matrices, consider the relation between sound and trigonometry, visualize the Riemann sum, the volume of surfaces of revolution and the area of unit circle. This paper illustrates how one can use Mathematica to visualize abstract mathematical concepts, thus enabling students to understand mathematics problems effectively in class. Development of these kinds of teaching and learning models can stimulate the students' curiosity about mathematics and increase their interest.

  • PDF

Design and Implementation of Model Manager for Flexible Supply Network Planning Model (유연한 공급망 계획 모형 작성을 위한 모형관리자의 설계 및 구현)

  • Yang, Young-Chul;Jang, Yang-Ja;Park, Chan-Kwon;Park, Jin-Woo
    • IE interfaces
    • /
    • v.15 no.1
    • /
    • pp.40-48
    • /
    • 2002
  • Recently, in the competitive environments, every company recognizes the importance of supply network planning models. However, there are so many problems in correctly applying mathematical model to the real world. Because mathematical modeling packages charge planning managers with understanding the models and responsibility for generating plans, fast and accurate model cannot be generated with ease. In this paper, we design the model management system that helps planning managers flexibly create and modify mathematical models and manage model versions. We implement the system with model base concept.

Accomplishments and Prospects in the Psychology of Mathematics Learning

  • Kirshner, David
    • Research in Mathematical Education
    • /
    • v.1 no.1
    • /
    • pp.13-22
    • /
    • 1997
  • Cognitive psychology has provided valuable theoretical perspectives on learning mathematics. Based on the metaphor of the mind as an information processing device, educators and psychologists have developed detailed models of competence in a variety of areas of mathematical skill and understanding. Unquestionably, these models are an asset in thinking about the curriculum we want our students to follow. But any psychological paradigm has aspects of learning and knowledge that it accounts for well, and others that it accounts for less well. For instance, the paradigm of cognitive science gives us valuable models of the knowledge we want our students to acquire; but in picturing the mind as a computational device it reduces us to conceiving of learning in individualist terms. It is less useful in helping us develop effective learning communities in our classrooms. In this paper I review some of the significant accomplishments of cognitive psychology for mathematics education, and some of the directions that situated cognition theorists are taking in trying to understand knowing and learning in terms that blend individual and social perspectives.

  • PDF

Small Signal Modeling of Current Mode Control (전류모드 제어의 소신호 모델링)

  • 정영석;강정일;최현칠;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.338-345
    • /
    • 1998
  • The mathematical interpretation of a practical sampler which is useful to obtain the small signal models for the peak and average current mode controls is proposed. Due to the difficulties in applying the Shannons sampling theorem to the analysis of sampling effects embedded in the current mode control, several different approaches have been reported. However, these approaches require the information of the inductor current in a discrete expression, which restricts the application of the reported method only to the peak current mode control. In this paper, the mathematical expressions of sampling effects on a current loop which can directly apply the Shannons sampling theorem are newly proposed, and applied to the modeling of the peak current mode control. By the newly derived models of a practial smapler, the models in a discrete time domain and a continuous time domain are obtained. It is expected that the derived models are useful for the control loop design of power supplies. The effectiveness of the derived models are verified through the simulation and experimental results.

  • PDF