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GLOBAL STABILITY OF THE VIRAL DYNAMICS WITH

CROWLEY-MARTIN FUNCTIONAL RESPONSE

Xueyong Zhou and Jingan Cui

Abstract. It is well known that the mathematical models provide very
important information for the research of human immunodeciency virus
type. However, the infection rate of almost all mathematical models is

linear. The linearity shows the simple interaction between the T-cells
and the viral particles. In this paper, a differential equation model of
HIV infection of CD4+ T-cells with Crowley-Martin function response is

studied. We prove that if the basic reproduction number R0 < 1, the
HIV infection is cleared from the T-cell population and the disease dies
out; if R0 > 1, the HIV infection persists in the host. We find that the
chronic disease steady state is globally asymptotically stable if R0 > 1.

Numerical simulations are presented to illustrate the results.

1. Introduction

Human immunodeficiency virus (HIV) is a lentivirus, a member of the retro-
virus family, that causes acquired immunodeficiency syndrome (AIDS), a con-
dition in humans in which the immune system begins to fail, leading to life-
threatening opportunistic infections. HIV transmission requires contact with
body fluids containing infected cells or plasma. HIV may be present in any
fluid or exudate that contains plasma or lymphocytes, specifically blood, se-
men, vaginal secretions, breast milk, saliva, or wound exudates. Although
theoretically possible, transmission by saliva or droplet nuclei produced by
coughing or sneezing is extremely rare, if it occurs. HIV is not transmitted
by casual contact or even by the close nonsexual contact that occurs at work,
school, or home. The most common means of transmission is direct transfer of
bodily fluids either through sharing contaminated needles or sexual relations.
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The HIV infection is an infectious disease characterized by continual decrease
of CD4+ lymphocyte cells, invariably causing the death of the host. The main
target is CD4+ T helper cell; a type of T cell. T cells are an important part
of the immune system because they help to facilitate the body’s response to
many common but potentially fatal infections. Without enough T-cells the
body’s immune system is unable to defend itself against many infections. In a
normal person, the level of CD4+ T cells in the peripheral blood is regulated
at a level between 800 and 1200 mm−3. By ways that are not yet completely
understood, HIV’s life cycle directly or indirectly causes a reduction in the
number of T-cells in the body, eventually resulting in an increased risk of
infections. Over time, there are not enough T-cells to defend the body. At this
stage, a person is said to have Acquired Immunodeficiency Syndrome, or AIDS,
and becomes susceptible to infections that a healthy immune system could
deal with. The time in between the first infection and initiation of antibody
synthesis is usually 6-12 weeks. The median time to receive an AIDS diagnosis
among those infected with HIV is 7-10 years.

Mathematical modelling has been proven to be valuable in understanding
the dynamics of HIV. And Several mathematical models have been proposed to
describe the in vivo dynamics of T cell and HIV interaction (see, for example,
[1, 12, 25, 26]). This is because HIV mathematical models can provide insights
into the dynamics of viral load in vivo. And they may pay a significant role in
the development of a better understanding of HIV and drug therapies.

The basic mathematical model of HIV pathogenesis in-host describes inter-
actions of the immune system and the virus by including healthy and infected
CD4+ T-cells and HIV virions [10, 9, 11, 14, 23]. A classic model for HIV
dynamics was proposed by Perelson et al. in [18, 19] as follows:

(1.1)



dT

dt
= s− dT − βTV,

dI

dt
= βTV − δI,

dV

dt
= pI − cV.

The first equation of (1.1) represents the dynamics of the concentration of
healthy CD4+ cells (T ); s represents the rate (assumed constant) at which new
CD4+ T-cells are generated. The death rate of healthy cells is d. In the case of
active HIV infection the concentration of healthy cells decreases proportionally
to the product βTV , where β represents a coefficient that depends on vari-
ous factors, including the velocity of penetration of virus into cells and the
frequency of encounters between uninfected cells and free virus. The second
equation of (1.1) describes the dynamics of the concentration of infected CD4+

cells (I); β is the rate of infection; δ is the death rate of infected cells. The
third equation of (1.1) describes the concentration of free virions (V ), which
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are produced by the infected cells at a rate p, and c is the death rate of the
virions.

Usually the rate of infection in most HIV models is assumed to be bilinear
in the virus V and the uninfected CD4+ cells T . However, the actual inci-
dence rate is probably not linear over the entire range of V and T . Thus, it
is reasonable as to assume that the infection rate of modelling HIV infection
in Crowley-Martin function response, βTV

1+aT+bV+abTV , where a, b ≥ 0 are con-
stants. The Crowley-Martin type of functional response was introduced by P.
H. Crowley and E. K. Martin [3]. When a > 0, b = 0, the Crowley-Martin
type of functional response is simplified to Michaelis-Menten (or Holling type
II) functional response. And when a = 0, b > 0, it expresses a saturation
response. Moreover, when a = 0, b = 0, the Crowley-Martin type of functional
response is simplified to a linear mass-action function response (or Holling type
I functional response). In general we consider the model with Crowley-Martin
functional response given by

(1.2)



dT

dt
= s− dT − βTV

1 + aT + bV + abTV
,

dI

dt
=

βTV

1 + aT + bV + abTV
− δI,

dV

dt
= pI − cV.

The system (1.2) needs to be analyzed with the following initial conditions:

(1.3) T (0) > 0, I(0) > 0, V (0) > 0.

We denote

R3
+ = {(T, I, V ) ∈ R3, T ≥ 0, I ≥ 0, V ≥ 0}.

Standard and simple arguments show that the solutions of the system (1.2)
exist and stay positive.

The rest of this article is organized as follows. In Section 2, we present
some preliminaries. In Section 3, the local and global stability of disease-free
equilibrium E0 of the system (1.2) are studied. In Section 4, the permanence
of the system (1.2) is investigated. Local and global asymptotic stability of the
disease steady state E∗ are discussed in Section 5. In Section 6, the numerical
simulations are presented to illustrate the results. Finally, the paper concludes
with a brief discussion.

2. Some preliminary results

It is important to show positivity and boundedness for the system (1.2)
as they represent populations. Positivity implies that populations surveries
and boundedness may be interpreted as a natural restriction to growth as a
consequence of limited resources. In this section, we present some basic results,
such as the positive invariance of the system (1.2), the existence of equilibria,
and the boundedness of solutions.
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2.1. Positive invariance

The model (1.2) can be written in the form

(2.1) Ẋ(t) = G(X(t)),

where X(t) = (x1, x2, x3)
⊤ := (T, I, V )⊤, X(0) = (T (0), I(0), V (0))⊤ ∈ R3

+

and

G(X) =

 G1(X)
G2(X)
G3(X)

 =

 s− dT − βTV
1+aT+bV+abTV

βTV
1+aT+bV+abTV − δI

pI − cV

 .

It is easy to check that Gi(X)|xi=0 ≥ 0, i = 1, 2, 3. Due to the well known
theorem by Nagumo [16], any solution of (1.2) with initial point X0 ∈ R3

+, say
X(t) = X(t;X0), is such that X(t) ∈ R3

+ for all t > 0.

2.2. Boundedness

Theorem 2.1. There exists M > 0 such that all the solutions satisfy T (t),
I(t), V (t) < M for all large t.

Proof. Since all solutions of (1.2) are positive, by the first equation of (1.2) we
have

dT

dt
= s− dT − βTV

1 + aT + bV + abTV
≤ s− dT.

Therefore, we have
dT

dt
<

s

d
+ 1

for all large t, say t > t0.
Set

V1(t) = T (t) + I(t).

Calculating the derivative of V1 along the solutions of the system (1.2), we
find

dV1(t)

dt
= s− dT (t)− δI(t) ≤ −hV1(t) + s,

where h = min(d, δ). Recall that T (t) ≤ s
d+1 for t > t0. Then there exists M1,

depending only on the parameters of the system (1.2), such that V1(t) ≤ M1

for t > t0. Then I(t) has an ultimately above bound. It follows from the third
equation of the system (1.2) that V (t) has an ultimately above bound, say,
their maximum is an M . Then the assertion of Theorem 2.1 now follows and
the proof is complete. This shows that the system (1.2) is dissipative. □

Define

Ω = {(T, I, V ) | 0 ≤ T ≤ s

d
+ 1, 0 ≤ I, V ≤ M}.

Obviously, Ω is convex.
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2.3. Equilibria

Let R0 = spβ
δc(d+sa) . It is well-known the importance of the value, R0, which

is called as the basic reproductive ratio of the system (1.2). It represents the
average number of secondary infection caused by a single infected T cells in an
entirely susceptible T cells population throughout its infectious period. And it
determines the dynamical properties of the system (1.2) over a long period of
time.

It is easy to see that if R0 ≤ 1, the disease-free steady state E0(T0, 0, 0)
(where T0 = s

d ) is the unique steady state, corresponding to the extinction of
the free virus. The following theorem presents the existence and uniqueness of
positive equilibrium if R0 > 1.

Theorem 2.2. If R0 > 1, then the system (1.2) has a unique interior equilib-
rium E∗(T ∗, I∗, V ∗) (i.e., T ∗ > 0, I∗ > 0, V ∗ > 0), where T ∗, I∗ and V ∗ are
given in the process of the proof.

Proof. From the system (1.2), such a point satisfies

(2.2)


s− dT ∗ − βT ∗V ∗

1 + aT ∗ + bV ∗ + abT ∗V ∗ = 0,

βT ∗V ∗

1 + aT ∗ + bV ∗ + abT ∗V ∗ − δI∗ = 0,

pI∗ − cV ∗ = 0.

We easily get

abpdT ∗2 + (pβ − δca+ bpd− absp)T ∗ − (δs+ bps) = 0,

and thus,

T ∗
± =

−(pβ − δca+ bpd− absp)±
√
(pβ − δca+ bpd− absp)2 + 4abpd(δs+ bps)

2abpd
.

Moreover, simply algebraic computations show that T ∗
+ > 0 and T ∗

− < 0.
Therefore, system (1.2) possesses a unique interior equilibrium E∗(T ∗, I∗, V ∗)
given by

T ∗ =
−(pβ − δca+ bpd− absp) +

√
(pβ − δca+ bpd− absp)2 + 4abpd(δs+ bps)

2abpd
,

I∗ =
1

δ
(s− dT ∗), V ∗ =

p

c
I∗

if an only if s− dT ∗ > 0.
It is easily to see that if R0 > 1, then s− dT ∗ > 0. Hence, the system (1.2)

has a unique interior equilibrium E∗(T ∗, I∗, V ∗) if R0 > 1. □
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3. Local and global stability of E0

Let Ê(T̂ , Î, V̂ ) be any arbitrary equilibrium. Then the characteristic equa-

tion about Ê is given by
(3.1)∣∣∣∣∣∣∣∣∣∣∣
−d− βV̂ + bβV̂ 2

(1 + aT̂ + bV̂ + abT̂ V̂ )2
− λ 0 − βT̂ + aβT̂ 2

(1 + aT̂ + bV̂ + abT̂ V̂ )2

βV̂ + bβV̂ 2

(1 + aT̂ + bV̂ + abT̂ V̂ )2
−δ − λ

βT̂ + aβT̂ 2

(1 + aT̂ + bV̂ + abT̂ V̂ )2

0 p −c− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0.

For equilibrium E0(T0, 0, 0), (3.1) reduces to

(3.2) (λ+ d)

[
λ2 + (c+ δ)λ+ cδ − pβT0

1 + aT0

]
= 0.

Hence, E0(T0, 0, 0) is locally asymptotically stable for R0 < 1. And it is a
saddle with dimW s(E0) = 2, dimWu(E0) = 1 for R0 > 1. Then we have the
following theorem.

Theorem 3.1. If R0 < 1, E0(T0, 0, 0) is locally asymptotically stable; if R0 >
1, E0(T0, 0, 0) is unstable.

Theorem 3.2. If R0 < 1, E0(T0, 0, 0) is globally asymptotically stable.

Proof. Define a Lyapunov function L1(T, I, V ) as follows:

L1(T, I, V ) = A1(T − T0 − T0 ln
T

T0
) + I +

δ

p
V,

where A1 > 0 is selected in the following proof. Calculating the time derivative
of L1(T, I, V ) along the positive solutions of the model (1.2), we obtain

L̇1 = A1(Ṫ − T0

T
Ṫ ) + İ +

δ

p
V̇

= A1

(
s− dT − βTV

1 + aT + bV + abTV
− T0

T
s+ dT0 +

βT0V

1 + aT + bV + abTV

)
+

βTV

1 + aT + bV + abTV
− δI +

δ

p
(pI − cV )

= dA1T0

(
2− T

T0
− T0

T

)
+

βTV

1 + aT + bV + abTV
+

A1βT0V

1 + aT + bV + abTV

+
A1βTV

1 + aT + bV + abTV
− δc

p
V

= dA1T0

(
2− T

T0
− T0

T

)
+

pβTV − pA1βTV − δcaTV

p(1 + aT + bV + abTV )
− δcabTV 2.
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Select A1 = δc
pβT0

. Clearly, L1(T, I, V ) is positive definite with respect to

(T − T0, I, V ). Furthermore, since

2− T

T0
− T0

T
< 0, (T ̸= T0),

2− T

T0
− T0

T
= 0, (T = T0),

and R0 ≤ 1, we have that L̇1(T, I, V ) ≤ 0 for all T, I, V > 0. Thus, the disease-

free steady state E0 is stable. And L̇1(T, I, V ) = 0, when T = T0 and V = 0.
Let Σ0 be the largest invariant set in the set

Σ = {(T, I, V ) | L̇1(T, I, V ) = 0} = {(T, I, V ) | T = T0, I ≥ 0, V = 0}.

We have from the third equation of (1.2) that Σ0 = {E0}. It follows from
LaSalle invariance principle that the disease-free steady state E0 is globally
asymptotically stable. □

4. The permanence of system (1.2)

In this section, we shall present the permanence of the system (1.2).

Definition 4.1. The system (1.2) is said to be persistent if there are positive
constants m, M such that each positive solution (T (t), I(t), V (t)) of the system
(1.2) with initial conditions (1.3) satisfies

m ≤ lim
t→+∞

inf T (t) ≤ lim
t→+∞

supT (t) ≤ M,

(4.1) m ≤ lim
t→+∞

inf I(t) ≤ lim
t→+∞

sup I(t) ≤ M,

m ≤ lim
t→+∞

inf V (t) ≤ lim
t→+∞

supV (t) ≤ M.

Definition 4.2 ([6, Metzler matrix]). Matrix A is a Metzler matrix if and only
if all its off-diagonal elements are non-negative.

Lemma 4.1 ([6, Perron-Frobenius Theorem]). Let A be an irreducible Metzler
matrix. Then, λM , the eigenvalue of A of largest real part is real, and the ele-
ments of its associated eigenvector vM are positive. Moreover, any eigenvector
of A with non-negative elements belongs to span vM .

In order to prove the permanence of system (1.2), we firstly present the
following useful lemma. And we require the following compactness condition.

Condition 4.1. There exist ϵ > 0 and a subset B of X with the following
properties:

(1) If x ∈ X and d(x,X2) < ϵ, then d(Φt(X), B) → 0 as t → ∞.
(2) The intersection B ∪ Bϵ(X2) of B with the ϵ−neighborhood of X2,

Bϵ(X2) = {x ∈ X; d(x,X2) < ϵ} has compact closure.



562 XUEYONG ZHOU AND JINGAN CUI

Lemma 4.2 ([24]). Let X1 be open in X and forward invariant under Φ.
Further, let the compactness assumption (Condition 4.1) hold. Assume the Ω2,

Ω2 = ∪y∈Y2ω(y), Y2 = {x ∈ X2; Φt ∈ X2,∀t > 0}

has an acyclic isolated covering M = ∪m
k=1Mk such that each part Mk of M is

a weak repeller of X1. Then X2 is a uniform strong repeller for X1.

Theorem 4.1. If R0 > 1, then the system (1.2) is permanent.

Proof. The result follows from an application of Lemma 4.2. Let us define X1

be the interior of R3
+ and X2 be the boundary of R3

+, i.e., X1 = int(R3
+) and

X2 = bd(R3
+). This choice is in accordance with the conditions stated in this

theorem. We begin by showing that sets X1 and X2 repel the positive solution
of the system (1.2) uniformly. Furthermore, note that by virtue of Theorem 2.1,
there exists a compact set B in which all solutions of the system (1.2) initiated
in R3

+ ultimately enter and remain forever after. The compactness condition is
easily verified for this set B. Denoting the ω-limit set of the solution x(t, x0)
of the system (1.2) starting in x0 ∈ R3

+ by ω(x0), we need to determine the
following set:

Ω = ∪y∈Y2ω(y), where Y2 = {x0 ∈ X2 | x(t, x0) ∈ X2, ∀t > 0}.

From the system (1.2), it follows that all solutions starting in bd(R3
+) but not

on the T -axis leave bd(R3
+) and that the T -axis is an invariant set, implying

that Y2 = {(T, I, V )⊤ ∈ bd(R3
+) | I = V = 0}. Furthermore, it is easy to see

that Ω = {E0} as all solutions initiated on the T -axis converge to E0. In fact,
in the set Y2, the system (1.2) becomes

Ṫ = s− dT.

It is easy to see that E0 is globally asymptotically stable if R0 < 1. Hence,
any solution (T (t), I(t), V (t)) of the system (1.2) initiating from Y2 is such that
(T (t), I(t), V (t)) → E0(T0, 0, 0). Obviously, E0 are isolated invariant, {E0} is
isolated and is an acyclic covering. Next, we show that W s(E0)∩X1 = ∅, i.e.,
E0 is a weak repeller for X1.

By definition, E0 is a weak repeller for X1 if for every solution starting in
x0 ∈ X1

(4.2) lim
t→+∞

d(x(t, x0), E0) > 0.

We claim that (4.2) is satisfied if the following holds:

(4.3) W s(E0) ∩ int(R3
+) = ∅.

To see this, suppose (4.2) does not hold for some solution x(t, x0) starting
in x0 ∈ X1. In view of the fact that the closed positive orthant is positively
invariant for system (1.2), it follows that limt→+∞ d(x(t, x0), E0) = 0 and thus
that limt→+∞ x(t, x0) = E0, which is clearly impossible if (4.3) holds. What
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remains to be shown is that (4.3) holds. The Jacobian matrix of the system
(1.2) at E0 is given in the following:

J0 =

 −d 0 − βT0

1+aT0

0 −δ βT0

1+aT0

0 p −c

 .

It easy to see that J0 is unstable if R0 > 1. In particular, J0 possesses one
eigenvalue with positive real part, which we denote as λ+, and two eigenvalues
with negative real part, −d, and an eigenvalue which we denote as λ−. We
proceed by determining the location of Es(E0), the stable eigenspace of E0.
Clearly, (1, 0, 0)⊤ is an eigenvector of J0 associated to −d. If λ− ̸= −d, then
the eigenvector associated to λ− has the following structure: (0, p2, p3)

⊤, where
p2, p3 satisfy the eigenvector equitation

(4.4)

(
−δ βT0

1+aT0

p −c

)(
p2
p3

)
= λ−

(
p2
p3

)
.

If λ− = −d, then λ− is a repeated eigenvalue, and associated generalized
eigenvector will possess the following structure: (∗, p2, p3)⊤, where the value of
∗ is irrelevant for what follows and p2 and p3 also satisfy (4.4).

We claim that in both case, the vector (p2, p3)
⊤ ̸∈ R2

+. Obviously, the
matrix in (4.4) is an irreducible Metzler matrix. From Definition 4.1, we know
that it is a matrix with nonnegative off-diagonal entries. By using Lemma 4.1
(Perron-Frobenius Theorem), we get that the matrix in (4.4) possesses a simple
real eigenvalue which is larger then the real part of any other eigenvalue, also
called the dominant eigenvalue. Clearly, the dominant eigenvalue here is λ+.
But the Perron-Frobenius Theorem also implies that every eigenvector that
is not associated with the dominant eigenvalue does not belong to the closed
positive orthant. Applied here, this means that (p2, p3)

T ̸∈ R2
+. Consequently,

Es(E0) ∩ int(R3
+) = ∅, and therefore also W s(E0) ∩ int(R3

+) = ∅, which
concludes the proof. □

5. Local and global asymptotic stability of the disease steady state

Firstly, we present sufficient conditions leading to locally asymptotically
stable disease steady state.

Theorem 5.1. Suppose that
(i) R0 > 1;

(ii) cδ
(

βV ∗+bβV ∗2

(1+aT∗+bV ∗+abT∗V ∗)2 + d
)
> dp(βT∗+bβT∗2)

(1+aT∗+bV ∗+abT∗V ∗)2 ;

(iii)

(
c+ d+ δ + βV ∗+bβV ∗2

(1+aT∗+bV ∗+abT∗V ∗)2

) [
cd+ dδ + (c+ δ) βV ∗+bβV ∗2

(1+aT∗+bV ∗+abT∗V ∗)2

]
+(c+ δ)cδ > p

(
c+ δ + 2dp+ βV ∗+bβV ∗2

(1+aT∗+bV ∗+abT∗V ∗)2

)
βT∗+bβT∗2

(1+aT∗+bV ∗+abT∗V ∗)2 .

Then the positive equilibrium E∗(T ∗, I∗, V ∗) is locally asymptotically stable.
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Proof. For equilibrium E∗(T ∗, I∗, V ∗), (3.1) reduces to

λ3 + b1λ
2 + b2λ+ b3 = 0,

where

b1 = c+ δ + d+
βV ∗ + bβV ∗2

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2
> 0,

b2 = c(δ + d)− p(βT ∗ + bβT ∗2)

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2
+ dδ +

(c+ δ)(βV ∗ + bβV ∗2)

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2
,

b3 = cδ

(
βV ∗ + bβV ∗2

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2
+ d

)
− dp(βT ∗ + bβT ∗2)

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2
.

We also have

b1b2 − b3

=
(
c+ d+ δ +

βV ∗ + bβV ∗2

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2

)[
cd+ dδ + (c+ δ)

βV ∗ + bβV ∗2

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2

]
+(c+ δ)cδ − p

(
c+ δ + 2dp+

βV ∗ + bβV ∗2

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2

)
βT ∗ + bβT ∗2

(1 + aT ∗ + bV ∗ + abT ∗V ∗)2
.

By Routh-Hurwitz criterion [16], we have that E∗(T ∗, I∗, V ∗) is locally
asymptotically stable. □

Next, we provide sufficient conditions leading to a globally asymptotically
stable disease steady state if the conditions of the theorem are satisfied.

Firstly, we will summarize the main facts related to our research. Let us
consider the system of differential equations

(5.1)
dX

dt
= F (X), X ∈ D,

where D is an open subset on R3 and F is twice continuously differentiable in
D. The noncontinuable solution of (5.1) satisfying X(0) = X0 is denoted by
X(t,X0), the positive (negative) semi-orbit through X0 is denoted by ϕ+(X0)
(ϕ−(X0)), and the orbit through X0 is denoted by ϕ(0) = ϕ−(X0) ∪ ϕ+(X0).
We use the notation ω(X0) (α(X0)) for the positive (negative) limit set of
ϕ+(X0) (ϕ

−(X0)), provided the latter semi-orbit has compact closure in D.
The system (5.1) is competitive in D [7, 21, 22, 27] if, for some diagonal

matrix H = diag(ϵ1, ϵ2, ϵ3), where ϵi is either 1 or −1, H(DF (X))H has non-
positive off-diagonal elements for X ∈ D, where DF (X) is the Jacobian of
Eq. (4.1). It is shown in [22] that if D is convex the flow of such a system
preserves for t < 0 the partial order in R3 defined by the orthant

K1 = {(X1, X2, X3) ∈ R3 | ϵiXi ≥ 0}.

Hirsch [7] and Smith [22, 27] proved that three-dimensional competitive
systems that live in convex sets have the Poincare-Bendixson property [15];
that is, any nonempty compact omega limit set that contains no equilibria
must be a closed orbit.
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Lemma 5.1. Assume D is convex and bounded. Suppose the system (5.1) is
competitive and permanent and has the property of stability of periodic orbits.
If x̄0 is the only equilibrium point in intD and if it is locally asymptotically
stable, then it is globally asymptotically stable in intD.

By looking at its Jacobian matrix and choosing the matrix H as

H =

 1 0 0
0 −1 0
0 0 1

 ,

we can see that the system (1.2) is competitive in Ω, with respect to the partial
order defined by the orthant K1 = {(T, I, V ) ∈ R3 : T ≥ 0, I ≤ 0, V ≥ 0}. Our
main results will follow from this observation and the above theorems.

Theorem 5.2. If the conditions of Theorem 5.1 and Condition (iv): d > asδ
d

hold, then the positive equilibrium E∗ of the system (1.2) is globally asymptot-
ically stable.

Proof. The system (1.2) is competitive, permanent if R0 > 1, and the only
equilibrium point E∗ of the system (1.2) is locally asymptotically stable if the
conditions of Theorem 5.1 hold true. Furthermore, in accordance with Lemma
5.1 (where we can choose D = Ω), Theorem 5.2 would be established if we
show that the system (1.2) has the property of the stability of periodic orbits.
In the following, we prove it.

Let P (t) = (T (t), I(t), V (t)) be a periodic solution whose orbit Γ is contained
in int(R3

+), suppose that its minimal period is ω > 0. The second compound
equation is following periodic linear system:

(5.2) Z ′(t) =
∂f [2]

∂x
(P (t))Z(t),

where Z = (Z1, Z2, Z3)
⊤ and ∂f

∂x is derived from the Jacobian matrix of the
system (1.2) and defined as follows:

∂f [2]

∂x
=


−d− δ − βV+bβV 2

(1+aT+bV+abTV )2
βT+bβT 2

(1+aT+bV+abTV )2
βT+bβT 2

(1+aT+bV+abTV )2

p −d− c− βV+bβV 2

(1+aT+bV+abTV )2 0

0 βV+bβV 2

(1+aT+bV+abTV )2 −δ − c

.
For the solution P (t), the equation (5.2) becomes
(5.3)

Ż1(t) = (−d− δ − βV+bβV 2

(1+aT+bV+abTV )2 )Z1 +
βT+bβT 2

(1+aT+bV+abTV )2 (Z2 + Z3),

Ż2(t) = pZ1 + (−d− c− βV+bβV 2

(1+aT+bV+abTV )2 )Z2,

Ż3(t) =
βV+bβV 2

(1+aT+bV+abTV )2Z2 − (δ + c)Z3.

To prove that (5.3) is globally asymptotically stable, we shall use following
Lyapunov function

(5.4) L(Z1, Z2, Z3;T (t), I(t), V (t)) = sup{|Z1|,
I

V
(|Z2|+ |Z3|)}.
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The function (5.4) is positive, but not differentiable everywhere. Fortunately,
this lack of differentiability can be remedied by using the right derivative of
L(t), denoted as D+L(t). Then we have the following equalities:
(5.5)

|Ż1(t)| ≤ −(d+ δ + βV+bβV 2

(1+aT+bV+abTV )2 )|Z1|+ βT+bβT 2

(1+aT+bV+abTV )2 (|Z2|+ |Z3|),
|Ż2(t)| ≤ p|Z1|+ (d+ c+ βV+bβV 2

(1+aT+bV+abTV )2 )|Z2|,
|Ż3(t)| ≤ βV+bβV 2

(1+aT+bV+abTV )2 |Z2| − (δ + c)|Z3|.

Therefore,

D+
I
V |Ż2(t)|+ |Ż3(t)| = ( İI − V̇

V ) I
V (|Z2|+ |Z3|) + I

V D+(|Z2|+ |Z3|)
≤ ( İI − V̇

V ) I
V (|Ż2|+ |Ż3|) + pI

V |Z1|
−(d+ c) I

V |Z2| − (c+ δ) I
V |Z3|.

Let d1 = min{d+ c, δ + c}. Define

(5.6) g1(t) = −d− δ − βV+bβV 2

(1+aT+bV+abTV )2 + V
I

βT+bβT 2

(1+aT+bV+abTV )2 ,

(5.7) g2(t) = p I
V + ( İI − V̇

V − c− d1) ≤ İ
I − d1.

From the last two equations of the system (1.2), we have

g1(t) ≤ −d− δ − βV+bβV 2

(1+aT+bV+abTV )2 + ( İI + δ) + a( sd + 1)( İI + δ)

≤ −d+ aδ( sd + 1) + [1 + a( sd + 1)] İI .

Thus, we obtain

(5.8) D+L(t) ≤ sup{g1(t), g2(t)}L(t).

From (5.6)-(5.8), we obtain sup{g1(t), g2(t)} ≤ −δ1+
İ
I , where δ1 = min{d1,

d− aδ( sd + 1)}.
Thus, we obtain

sup{g1(t), g2(t)} ≤
[
1 + a(

s

d
+ 1)

] İ

I
− δ1.

Hence,

(5.9)

∫ ω

0

max{g1(t), g2(t)}dt ≤ [1 + a(
s

d
+ 1)]I(t)|ω0 − δ1ω = −δ1ω,

since I(t) is periodic of minimal period ω. From (5.8) and (5.9), we have
L(t) → 0 as t → ∞. Therefore, (Z1(t), Z2(t), Z3(t)) → (0, 0, 0) as t → ∞.

This implies that the linear system Eq. (5.3) is asymptotically stable and
therefore the periodic solution is asymptotically orbitally stable. This proves
Theorem 5.2. □
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Table 1. Parameter values used for simulation

Parameters Range of the parameters Source Values
s (T-cells source term) 0-10 cells mm −3day−1 [4, 8, 17] 10
d (Death rate of healthy T-cells) 0.007-0.1day−1 [17] 0.09
β (Viral infectivity rate) 0.00025-0.5 virions [4, 8, 17] 0.0025
δ (Death rate of infected T-cells) 0.2-0.5day−1 [4, 5, 20] 0.4
c (Clearance rate of virus) 2.4-3day−1 [4, 17, 20] 2.4
p (Virion production rate) 29-376/day [2, 13] 300
a (Positive parameters that describe Assumed 0.0015

the effects of capture rate)
b (Positive parameters that describe Assumed 0.4

the effects of capture rate)

6. Numerical simulation

In this section, we perform some numeric simulations to demonstrate the
theoretical results obtained in Section 5 by using Matlab 9.5. We present the
numerical simulations to observe the dynamics of the system with a set of
parameter values in Table 1. We can get that the system (1.2) exists a unique
positive equilibrium E∗(104.9265344, 1.113223809, 139.1529762). We have seen
in previous sections that the basic reproduction number R0 plays a decisive rule
in determining the virus dynamics. We can also get R0 = 59.52380952 > 1.
Moreover, the eigenvalues associated with the characteristic equation

λ3 + 2.994583397λ2 + 1.453113335λ+ 0.1115940103 = 0

are −0.09468969487, −0.4887899513, −2.411103751. Finally, we can see that
the Condition (iv) of Theorem 5.2 is satisfied. Hence, the positive steady state
E∗ is locally asymptotically stable (See Fig. 1).

However, Fig. 2 indicates that the disease steady state E∗ is globally asymp-
totically stable although the condition (iv) of Theorem 5.2 is not satisfied.
Thus, we conjecture that the unique disease steady state E∗ is globally asymp-
totically stable only if the conditions of Theorem 5.1 are satisfied.

A model for HIV infection similar to (1.2) but using a simplified “mass-
action” term in which the rate of infection is given by βTV has been proposed
in [18, 19]. The model and the global dynamics of the model (1.2), however,
have not been rigorously established in the literature. The difference in the
proliferation term does change the basic reproduction number. It will change
the count of CD4+ T-cell at equilibrium level, and it also changes the equilib-
rium level of viral load during chronic infection. In Fig. 3 and Fig. 4, we present
the different values of b and a, respectively. We can find that the smaller a (or
larger b), the smaller T and the higher V .

7. Discussion

In this paper, we investigate a differential equation model of HIV infection of
CD4+ T-cells with Crowley-Martin functional response. By stability analysis
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Fig.1: System (1.2) has one positive equilibrium E∗ and it is globally
asymptotically stable if the conditions of Theorem 5.2 are satisfied.
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Fig.2: System (1.2) has one positive equilibrium E∗ and it is globally
asymptotically stable if the condition (iv) of Theorem 5.2 are not satisfied.
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Fig.3: Variations of healthy CD4+ cells (T ) and virus population (V ) for
different values b.

we obtain sufficient conditions on the parameters for the global stability of the
infected steady state and the infection-free steady state.

If we compare model (1.2) with the basic model (1.1), we find that virus
load decreases because of the difference in the infection rate. When a = b = 0,
the model (1.2) coincides with the basic model (1.1), of which unique infected

steady state is globally asymptotically stable if R∗
0 = spβ

δcd > 1. If a > 0, then
R∗

0 > R0 and lima→0 R0 = R∗
0. Combination of numerical simulation, we can

obtain that parameter a is important to model (1.2). Although parameter b is
independent with R0, it changes the count of CD4+ T-cell at equilibrium level,
and it also changes the equilibrium level of viral load during chronic infection.
Hence, parameter b is also important to model (1.2). That is to say, model
(1.2) is more reasonable than model (1.1). We can monitor the values of a and
b to help us solve some disease control problems of AIDS.
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Fig.4: Variations of healthy CD4+ cells (T ) and virus population (V ) for
different values a.

If we assume that the population dynamics of CD4+ cells is following [25,
26, 19]:

dT

dt
= s+ rT (1− T

Tmax
)− dT,

where r is the maximum proliferation rate and Tmax is the T cell population
density at which proliferation shuts off, the model (1.2) be modified as the
following:

(7.1)


dT

dt
= s+ rT (1− T

Tmax
)− dT − βTV

1 + aT + bV + abTV
,

dI
dt =

βTV

1 + aT + bV + abTV
− δI,

dV
dt = pI − cV.
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Furthermore, we can consider “cure rate” [25] in the dynamics of (7.1).
Hence, we can present the following model:

(7.2)


dT

dt
= s+ rT (1− T

Tmax
)− dT − βTV

1 + aT + bV + abTV
+ ρI,

dI
dt =

βTV

1 + aT + bV + abTV
− δI − ρI,

dV
dt = pI − cV,

where ρ is the rate of “cure”. We can also include “intracellular” delay [26]:

(7.3)


dT

dt
= s+ rT (1− T

Tmax
)− dT − βTV

1 + aT + bV + abTV
+ ρI,

dI
dt =

βe−mτT (t− τ)V (t− τ)

1 + aT (t− τ) + bV (t− τ) + abT (t− τ)V (t− τ)
− δI − ρI,

dV
dt = pI − cV,

where the term e−mτ accounts for cells that are infected at time t but die before
becoming productively infected τ time units later (i.e., if we assume a constant
death rate m for infected but not yet virus-producing cells, the probability of
surviving from time t− τ to t is just e−mτ ).

From above, we can see the novelty of the model (1.2) compared to the
models studied in [25] and [26] is modified the infection rate. And Crowley-
Martin type of functional response is more appropriate than bilinear infection
rate. The model (1.2) would be a positive role to the study of infectious diseases
of AIDS.

Finally, models (7.1), (7.2) and (7.3) are more reasonable than model (1.2).
And the dynamics behaviors of models (7.1), (7.2) and (7.3) are more complex
than (1.2). We leave it in the future.
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