• 제목/요약/키워드: Materials flow analysis

검색결과 1,174건 처리시간 0.027초

VaRI 공정 유동해석 간소화 방법에 대한 연구 (A Study on Simplifying Flow Analysis of VaRI Process)

  • 김영민;이정완;김정수;안세훈;오영석;이진우;김위대;엄문광
    • Composites Research
    • /
    • 제34권4호
    • /
    • pp.233-240
    • /
    • 2021
  • VaRI(Vacuum assisted Resin Infusion) 공정은 공정비용이 저렴하며, 크기가 큰 복합재 제작에 적합한 OoA(Out of Autoclave) 공정이다. VaRI 공정에서는 원할한 수지 주입을 위해 섬유 상단에 유로망을 적층한다. 수지는 이 유로망을 따라 섬유의 면 방향으로 빠르게 공급되고, 공급된 수지는 다시 섬유의 두께방향으로 함침된다. 면방향의 유동과 두께방향의 유동이 동시에 일어나기 때문에 수지의 유동을 예측하기 힘들며, 수지 주입과정을 예측하기 위해 3D 수치해석 프로그램이 사용되고 있다. 하지만, 3D로 해석하기 위해서 섬유와 유로망의 두께방향에 많은 Element가 필요하고, 이로 인해 제품의 크기가 클수록 해석시간이 오래 걸린다. 따라서 본 연구에서는 3D 유동해석을 2D 해석으로 간소화하여 유동해석에 소요되는 시간을 줄이는 방법을 제시하였다. 3D 유동해석과 간소화된 2D 유동해석을 동일조건에서 비교하여 효용성을 검증하였고, 충진시간 오차율은 약 7%, 유동해석시간 감소율은 약 95%로 나타났다. 또한 3D 해석에서 섬유 상, 중, 하단 간의 유동 전진 거리의 차이가 일정하다는 것을 활용하여 간소화된 2D 유동해석에서도 상, 중, 하단의 유동 전진 거리를 예측할 수 있었다.

Materials Flow Analysis of Metallic Cobalt and Its Powder in Korea

  • Hon, Hyun Seon;Kang, Lee-Seung;Kang, Hong-Yoon;Suk, Han-Gil
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.235-240
    • /
    • 2014
  • The basis of the cobalt demand analysis by use was established via the investigation and analysis of the cobalt materials flow, and the overall cobalt metal material and parts industry structure in Korea was examined to determine the cobalt material flow. The markets of the cobalt material for machinery were studied, including their interrelations, via market and study trends, and relevant plans were examined. The results of the study indicated that the advanced core technology for advanced industry and technology-intensive industry development is required to structurally innovate the parts materials and basic materials industries and to upgrade the catch-up industry structure to the new frontier structure.

Similarity Relations of Resin Flow in Resin Transfer Molding Process

  • Um, Moon-Kwang;Byun, Joon-Hyung;Daniel, Isaac M.
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.135-152
    • /
    • 2009
  • Liquid molding processes, such as resin transfer molding, involve resin flow through a porous medium inside a mold cavity. Numerical analysis of resin flow and mold filling is a very useful means for optimization of the manufacturing process. However, the numerical analysis is quite time consuming and requires a great deal of effort, since a separate numerical calculation is needed for every set of material properties, part size and injection conditions. The efforts can be appreciably reduced if similarity solutions are used instead of repeated numerical calculations. In this study, the similarity relations for pressure, resin velocity and flow front propagation are proposed to correlate another desired case from the already obtained numerical result. In other words, the model gives a correlation of flow induced variables between two different cases. The model was verified by comparing results obtained by the similarity relation and by independent numerical simulation.

유동-구조 연성해석을 이용한 공압용 파워 유닛에 사용되는 중공사막 모듈에 대한 제습특성 연구 (A Study on Dehumidification Characteristics of Hollow Fiber Membrane Module for Pneumatic Power Unit Using Fluid-Solid Interaction Analysis)

  • 정은아;하룬 칸;이기윤;윤소남
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.65-73
    • /
    • 2019
  • In this study, flow analysis and fluid-solid interaction analysis were conducted on a hollow fiber membrane module used for analysis of dehumidification characteristics. To ensure the reliability of the flow analysis results, the dehumidification experiment was performed under the temperature of 30℃ and relative humidity of 30% RH. The results of the dehumidification experiments were compared with the flow analysis results. The results of dehumidification experiments and flow analysis had a difference of approximately 5%. A 1-Way fluid-solid interaction analysis with various materials was conducted. From the results, it was found that the baffle with the largest shape deformation (polyethylene material) was subjected to 2-way fluid-solid interaction. The analysis of fluid flow and dehumidification characteristics were analyzed according to the shape deformation of the baffle.

Environment Emission and Material Flow Analysis of Chromium in Korea

  • Shin, Dong-won;Kim, Jeong-gon
    • 한국분말재료학회지
    • /
    • 제22권3호
    • /
    • pp.187-196
    • /
    • 2015
  • With the stabilization of Korea's industrialization, it has become interested in the efficient use of rare metals, climate change and industrial environment and safety etc. It is thus making efforts to implement economic policies that address such issues. Therefore it is necessary to understand the demand, supply and use of metal materials. Since 2010, the Korean government has developed the integrated material flow methodology and has been trying to examine the demand, supply and use of metal materials. In 2013, the Korean government surveyed the material flow of chromium. Material flow analysis and environment emission of chromium were investigated 8 steps; (1) raw material, (2) first process, (3) Intermediate product, (4) End product, (5) Use/accumulation, (6) Collection, (7) Recycling, (8) Disposal. Chromium was used for stainless steel, alloy steel, coated sheets, refractory material and coating materials. Recycling was done mainly in use of stainless steel scrap. To ensure efficient use of chromium, process improvement is required to reduce the scrap in the intermediate product stage. In the process of producing of the products using chromium, it was confirmed that chromium was exposed to the environment. It requires more attention and protection against environment emission of chromium.

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • 제1권1호
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF

500 PS급 선박 SCR 반응기에서 디퓨저 각도와 면적비에 따른 유동균일도 수치해석 (Numerical Analysis on Flow Uniformity According to Area Ratio and Diffuser Angle in an SCR Reactor of a 500 PS-Class Ship)

  • 성홍석;박인성;장현;박창대;김현규;정경열;서정세
    • 한국생산제조학회지
    • /
    • 제24권4호
    • /
    • pp.394-399
    • /
    • 2015
  • Because flow uniformity affects the life cycle and performance of the catalyst, it is an important design factor for selective catalytic reduction (SCR) systems. We examined how the diffuser angle and the area ratio of the inlet of the SCR reactor to the front of the catalyst affect flow uniformity. For the numerical analysis, we used STAR-CCM+, a common CFD software program. Analysis results showed that the larger the area ratio was, the less the flow uniformity was, and that the longer the diffuser length was, the greater the flow uniformity was. When the area ratio was greater than 1:5, the flow uniformity appeared very similar at the front of the catalyst. As a result, the spread time of the exhaust gas increased and the flow velocity decreased.

Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber

  • Lee, In;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Son, Jeong-Woo;Yi, In-Geol;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.157-163
    • /
    • 2014
  • The adsorption of Cr(VI) from aqueous solutions to activated carbon fiber (ACF) was investigated using both batch and flow-through column experiments. The batch experiments (adsorbent dose, 10 g/L; initial Cr(VI) concentration, 5-500 mg/L) showed that the maximum adsorption capacity of Cr(VI) to ACF was determined to 20.54 mg/g. The adsorption of Cr(VI) to ACF was sensitive to solution pH, decreasing from 9.09 to 0.66 mg/g with increasing pH from 2.6 to 9.9; the adsorption capacity was the highest at the highly acidic solution pHs. Kinetic model analysis showed that the Elovich model was the most suitable for describing the kinetic data among three (pseudo-first-order, pseudo-second-order, and Elovich) models. From the nonlinear regression analysis, the Elovich model parameter values were determined to be ${\alpha}$ = 162.65 mg/g/h and ${\beta}$ = 2.10 g/mg. Equilibrium isotherm model analysis demonstrated that among three (Langmuir, Freundlich, Redlich-Peterson) models, both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the model analysis, the Redlich-Peterson model fit was superimposed on the Freundlich fit. The Freundlich model parameter values were determined to be $K_F$ = 0.52 L/g and 1/n = 0.56. The flow-through column experiments showed that the adsorption capacities of ACF in the given experimental conditions (column length, 10 cm; inner diameter, 1.5 cm; flow rate, 0.5 and 1.0 mL/min; influent Cr(VI) concentration, 10 mg/L) were in the range of 2.35-4.20 mg/g. This study demonstrated that activated carbon fiber was effective for the removal of Cr(VI) from aqueous solutions.

Mass transfer in cross-flow dialyzer with internal recycle

  • Yeh, Ho-Ming;Chen, Chien-Yu
    • Membrane and Water Treatment
    • /
    • 제4권4호
    • /
    • pp.251-263
    • /
    • 2013
  • The internal reflux effect on dialysis through the retentate phase of a countercurrently cross-flow rectangular module is investigated. Theoretical analysis of mass transfer in cross-flow devices with or without recycling is analogous to heat transfer in cross-flow heat exchangers. In contrast to a device without reflux, considerable mass transfer is achievable if cross-flow dialyzers are operated with reflux, which provides an increase in fluid velocity, resulting in a reduction in mass-transfer resistance. It is concluded that reflux can enhance mass transfer, especially for large flow rate and feed-concentration operated under high reflux ratio.

판형 열교환기 전열판의 부식 파손 분석 (Corrosion Failure Analysis of Flow Plate in Plate Heat Exchanger)

  • 송민지;최가현;채호병;김우철;김희산;김정구;이수열
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.204-209
    • /
    • 2021
  • Corrosion failure analysis of the flow plate, which is one of the accessories of the plate heat exchanger in a district heating system, was performed. The flow plate is made of 316 stainless steel, and water at different temperatures in the flow plate exchanges heat in a non-contact manner. The flow plate samples in which water mixing issues occurred were collected. Corrosion-induced pits, oxides, and contaminants were observed at locations where two plates are regularly in contact. The EDS analysis of the surface oxides and contaminants revealed that they were composed of carbon, silicon, and magnesium, which came from chemical adhesives. The IC/ICP analyses showed that the concentration of chloride ions was 30 ~ 40 ppm, which was not sufficient to cause corrosion of stainless steel. In the crevice, a local decrease in dissolved oxygen occurs along with an increase in chloride ions, thus forming an acidic environment. These environments destroyed the passive film of stainless steel, resulting in pits. Moreover, contaminants formed a narrower gap between the two metal plates and inhibited the diffusion of ions, thereby accelerating crevice corrosion.