Browse > Article
http://dx.doi.org/10.12989/mwt.2013.4.4.251

Mass transfer in cross-flow dialyzer with internal recycle  

Yeh, Ho-Ming (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University)
Chen, Chien-Yu (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University)
Publication Information
Membrane and Water Treatment / v.4, no.4, 2013 , pp. 251-263 More about this Journal
Abstract
The internal reflux effect on dialysis through the retentate phase of a countercurrently cross-flow rectangular module is investigated. Theoretical analysis of mass transfer in cross-flow devices with or without recycling is analogous to heat transfer in cross-flow heat exchangers. In contrast to a device without reflux, considerable mass transfer is achievable if cross-flow dialyzers are operated with reflux, which provides an increase in fluid velocity, resulting in a reduction in mass-transfer resistance. It is concluded that reflux can enhance mass transfer, especially for large flow rate and feed-concentration operated under high reflux ratio.
Keywords
dialysis; cross flow; countercurrently internal recycle; rectangular module;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yeh, H.M. (2011), "Numerical analysis of mass transfer in countercurrently parallel-flow rectangular dialyzer with internal recycle for improved performance", Tamkang J. Sci. Eng., 14(4), 351-358.
2 Yeh, H.M. and Chang Y.H. (2005), "Mass transfer for dialysis through parallel-flow double-pass rectangular membrane modules", J. Membr. Sci., 260(1-2), 1-9.   DOI   ScienceOn
3 Yeh, H.M. and Chen, Y.K. (2000), "Membrane extraction through cross-flow rectangular modules", J. Membr. Sci., 170(2), 235-242.   DOI   ScienceOn
4 Yeh, H.M. and Liao, W.L. (2013), "Recycled membrane extraction in multipass rectangular modules with modified correction-factor analysis", J. Taiwan Inst. Chem. Engr., (In Press) (Available online 8 April 2013) http://dx.doi.org/10.1016/j.jtice.2013.03.001.   DOI   ScienceOn
5 Yeh, H.M. and Yang, C.C. (2012), "Modified correction-factor analysis on membrane extraction in multipass countercurrent-flow external-recycle rectangular modules", J. Taiwan Inst. Chem. Engr., 43(4), 542-550.   DOI   ScienceOn
6 Yeh, H.M., Cheng, T.W. and Chen, Y.J. (1997), "Analysis of dialysis coupled with ultrafiltration in cross-flow membrane modules", J. Membr. Sci., 134(2), 151-162.   DOI   ScienceOn
7 Yeh, H.M., Cheng, T.W. and Chen, Y.J. (2000), "Mass transfer for dialysis with ultrafiltration flux declined in cross-flow membrane modules", J. Chem. Eng. Jpn., 33(3), 440-448.   DOI   ScienceOn
8 Yeh, H.M., Tsai, S.W. and Chiang, C.L. (1987), "Recycle effects on heat and mass transfer through a parallel-plate channel", AIChE J., 33(10), 1743-1746.   DOI   ScienceOn
9 Costanzo, M.R., Saltzberg, M., O'Sullivan, J. and Sobotka, P. (2005), "Early ultrafiltration in patients with decompensated heart failure and diuretic resistance", J. Am. Coll. Cardiol., 46(11), 2047-2051.   DOI   ScienceOn
10 Geankoplis, C.J. (1983), Transport Processes and Unit Operations, Allyn and Bacon, Inc., Massachusetts, 394.
11 Goto, S. and Gaspillo, P.D. (1992), "Effect of static mixer on mass transfer in draft tube bubble column and in external loop column", Chem. Eng. Sci., 47(13-14), 3533-3539.   DOI   ScienceOn
12 Kessler, S.B. and Klein, E. (1992), Part IV: Dialysis, Chapter 11: Definition, Membrane Handbook, W.S.W. Ho and K.K. Sirkar, Ed. Chapman and Hall, New York, 163-166.
13 Ho, C.D., Yeh, H.M. and Sheu, W.S. (1998), "The analytical studies of heat and mass transfer through a parallel-plate channel with recycle", Int. J. Heat Mass Transfer, 41(17), 2589-2599.   DOI   ScienceOn
14 Jacob, M. (1957), Heat Transfer, Wiley, New York, 2, 230-260.
15 Kazory, A. and Ross, E.A. (2008), "Contemporary trends in the pharmacological and extracorporeal management of heart failure: A nephrologic perspective", Circulation, 117, 975-983.   DOI   ScienceOn
16 Kolev, S.D. and van der Linden, W.E. (1992a), "Influence of the main parameters of a parallel-plate dialyzer under laminar flow conditions", Analytica Chimica Acta, 257(2), 317-329.   DOI   ScienceOn
17 Bourge, R.C. and Tallaj, J.A. (2005), "A new approach toward mechanical diuresis in heart failure", J. Am. Coll. Cardiol., 46(11), 2052-2053.   DOI   ScienceOn
18 Costanzo, M.R., Guglin, M.E., Saltzberg, M.T., Jessup, M.L., Bart, B.A., Teerlink, J.R., Jaski, B.E., Fang, J.C., Feller, E.D., Haas, G.J., Anderson, A.S., Schollmeyer, M.P. and Sobotka, P.A. (2007), "Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure", J. Am. Coll. Cardiol., 49(6), 675-683.   DOI   ScienceOn
19 Kolev, S.D. and van der Linden, W.E. (1992b), "Analysis of transient laminar mass transfer in a parallel-plate dialyzer", Analytica Chimica Acta, 257(2), 331-342.   DOI   ScienceOn
20 Mulder, M. (1991), Basic Principle of Membrane Technology, Kluwer, London.
21 Nakayama, M., Nakano, H. and Nakayama, M. (2010), "Novel therapeutic option for refractory heart failure in elderly patients with chronic kidney disease by incremental peritoneal dialysis", J. Cardiol., 55(1), 49-54.   DOI   ScienceOn
22 Yeh, H.M. (2009), "Numerical analysis of mass transfer in double-pass parallel-plate dialyzers with external recycle", Comput. Chem. Eng., 33(4), 815-821.   DOI   ScienceOn
23 Poter, M.C. (1990), Handbook of Industrial Membrane Technology, Noyes Publications, New Jersey, 175, 1-3.
24 Yeh, H.M. (2006), "Effect of reflux and reflux-barrier location on solvent extraction through cross-flow flat-plate membrane modules with internal reflux", J. Membr. Sci., 269(1-2), 133-141.   DOI   ScienceOn
25 Yeh, H.M. (2008), "Membrane extraction in rectangular modules with external recycle", J. Chin. Inst. Chem. Engr., 39(6), 679-684.   DOI   ScienceOn