• 제목/요약/키워드: Material specific

검색결과 2,658건 처리시간 0.029초

${\cdot}$부극 재료의 특성에 따른 리튬이온전지의 용량설계 (Capacity Design of Lithium Ion Battery Based on the Characteristics of Materials)

  • 문성인;도칠훈;윤성규;염덕형
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 1998년도 전지기술 심포지움
    • /
    • pp.7-27
    • /
    • 1998
  • In order to design capacity of lithium ion battery, some calculations were carried out based on the characteristics of materials by the given battery shape and dimension. The principle of design was built by the interpretation of the correlation of material, electrochemical and battery factors. Parameters of materials are fundamental physical properties of constituent such as cathode. separator, anode, current collectors and electrolyte. Electrochemical factor includes potential pattern as a function of specific capacity, specific discharge capacity(or initial irreversible specific capacity or Ah efficiency) as a function of specific charge capacity and material balancing. Parameters of battery are dimension, construction hardware and performance. Battery capacity was simulated for a lithium cobalt dioxide as cathode and a hard carbon as anode to achieve 1100 mAh for the charge limit voltage of 4.2V, the weight ratio(+/-) of 2.4 and ICR18650. A fabricated test cell (ICR18650) which have weight ratio(+/-) of 2.4 discharged to 1093 mAh for the charge limit voltage of 4.2V. The sequential discharge capacity show good correspondence with designed capacity.

  • PDF

Synthesis of CdS with Graphene by CBD(Chemical Bath Deposition) Method and Its Photocatalytic Activity

  • Pawar, R.C.;Lee, Jin-Yong;Kim, Eun-Jeong;Kim, Hyungsub;Lee, Caroline Sunyong
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.504-507
    • /
    • 2012
  • Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.

목록에서의 자료종별표시에 관한 연구 (A study on the material designation in library cataloging)

  • 이창수
    • 한국도서관정보학회지
    • /
    • 제25권
    • /
    • pp.377-404
    • /
    • 1996
  • The purpose of this study is to investigate material designation in library cataloging and to suggest General Material Designation (GMD) and Specific Material Designation(SMD) in Korean. A summary of the study follows. In library cataloging, methods of indicating the type of material are : (1) color-coding, (2) media code as part of the call number, (3) material designation in physical description area or note area, (4) GMD and SMD. GMD is a term indicating the broad class of material to which a bibliographic item belongs. SMD is a term indicating the special class of material to which a bibliographic item belongs. GMD was listed in parenthesis following the title proper before AACR1975 code, but currently it is listed in square brackets after the AACR1975 code. AACR2 was the standard cataloging rule in GMD and SMD terminology. It is suggested that GMD be used in Korean for graphic material, sound recordings, drawings, microform, multimedia, videorecordings, manuscripts, photographs, slides, printed music, motion pictures, printed texts, objects, braille, cartographic materials, computer files and transparenies.

  • PDF

Investigation of amorphous material with ice for cold thermal storage

  • Kim, Jhongkwon;Park, Hyunjun;Bae, Junhyuk;Jeong, Sangkwon;Chang, Daejun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권1호
    • /
    • pp.40-44
    • /
    • 2019
  • This study investigates mixtures of water and cryoprotectant agents (CPAs) to store high-grade cold energy. Although water is an ideal material for a cold thermal storage (CTS) due to its high specific heat, undesirable volume expansion may cause structural stresses during freezing. The volume expansion can be alleviated by adding the CPAs to water. However, the CPA aqueous solutions not only have different thermal properties but also transit to amorphous state different from pure water. Therefore, these characteristics should be considered when using them as material of the CTS. In experiments, glycerol and dimethyl sulfoxide (DMSO) are selected as the candidate CPA. The volume expansion of the solution is measured by an in-situ strain gauge in low temperature region. The specific heat capacity of the solution is also measured by differential scanning calorimetry (DSC). Both the amount of volume expansion and the specific heat capacity of the CPA aqueous solution decrease in the case of higher concentration of CPA. These characteristics should be contemplated to select optimal aqueous solution for CTS for liquid air energy storage system (LAES). The CPA solutions have advantages of having wide temperature range to utilize the latent heat of water and higher sensible heat of the CPA. The CPA solutions which can satisfy the allowable stress of the structure are determined. Consequently, among the CPA solutions investigated, DMSO 20% w/w solution is the most suitable for the CTS.

마그네슘 합금 판재의 온간 V-굽힘에서 소재의 변형 및 보토밍 공정의 효과 분석 (Study on the Deformation Characteristics of AZ31B Sheets in V-bending and Effect of Bottoming Process)

  • 김현우;유제형;이창환
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.139-144
    • /
    • 2018
  • Many studies have been conducted on the process of forming magnesium alloy sheets to reduce the body weights of vehicles. Magnesium has a lower specific gravity than steel and also has a higher specific strength. Mg alloy sheets have low formability and a lot of springback due to their limited ductility and low young's modulus. As the temperature increases, the yield strength of the material decreases. Warm forming increases the formability and minimizes the springback of a material by heating it and the die to reduce the required load at forming. In this study, the temperature of the AZ31B sheet was controlled in order to reduce springback and increase formability. However, as the temperature increased, the deformation characteristics of the material changed and the radius of curvature of the material increased. The load and springback amount required for forming were analyzed according to the temperature and the bottoming force in the bending deformation.

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

첨가물에 따른 $(Ba_{0.6}Sr_{0.4})TiO_3$의 저온소결 및 유전특성 (Low Temperature Sintering and Dielectrics Properties of $(Ba_{1-x}Sr_x)TiO_3$ Ceramics by Addition)

  • 전소현;김인성;송재성;민복기;윤존도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.202-203
    • /
    • 2005
  • To recognize whether admixture affects some $(Ba_{0.6}Sr_{0.4})TiO_3$, powder in this research $Li_2CO_3$, MgO, $MnO_2$ adding each 3 wt % by Tape casting method thick film make. Sitering temperature lowered 1300$^{\circ}C$ adding $Li_2CO_3$, and density is 5.942g/$cm^3$, and specific inductive capacity increases about decuple and displayed 4000. Climbed sitering temperature 1400$^{\circ}C$ adding MgO, specific inductive capacity reduced 1/2 times. Lowered sintering temperature 1325$^{\circ}C$ low adding $MnO_2$.

  • PDF

The Possibility of 1,3,4-Oxadiazole Containing Polymer as a New Polymer Electrode in Redox Supercapacitor

  • Ryu, Kwang-Sun;Chang, Soon-Ho;Kwon, Soon-Ki;Kim, Yun-Hi;Hwang, Do-Hoon
    • Macromolecular Research
    • /
    • 제10권1호
    • /
    • pp.40-43
    • /
    • 2002
  • Poly(1', 4'-phenylene-1", 4"-(2"-(2""-ethyl-hexyloxy)) phenylene-1",4"-phenylene-2,5-oxadiazolyl) (PPEPPO) was synthesized and its electrochemical characteristics was investigated as electrode material in redox supercapacitor. The cyclic voltammetry (CV) shows there was scarcely a redox reaction and further suggests n-doping is difficult to occur in this system. However, the discharge curve between 3.0 to 0.01 V is continuously decreased like a straight line, similar to the discharge pattern of EDLC. The initial specific discharge capacitance is ~6.4 F/g, while the specific capacitance of 1000th cycle is ~0.1 F/g. The PPEPPO can be used as the electrode of supercapacitor, emissive material, as well as charge-transporting material in polymer LED.ansporting material in polymer LED.

마이크로전자 응용에서의 저유전율 고분자 재료 (Low Dielectric Constant Polymeric Materials for Microelectronics Applications)

  • 이호영
    • 마이크로전자및패키징학회지
    • /
    • 제9권3호
    • /
    • pp.57-67
    • /
    • 2002
  • 반도체 칩의 신호처리속도를 향상시키기 위한 방법에는 세 가지가 있다. 첫 번째 방법은 금속배선의 배치(layout)를 바꾸는 것이고, 두 번째 방법은 배선으로 사용되는 금속의 비저항을 감소시키는 것이며, 세 번째 방법은 절연재료(insulating material)의 유전상수(dielectric constant)를 감소시키는 것이다. 첫 번째나 두 번째의 방법에 대해서는 많은 연구가 이루어졌고, 지금도 연구가 이루어지고 있다. 그러나 첫 번째나 두 번째의 방법을 통하여 얻을 수 있는 신호처리속도의 향상보다는 세 번째 방법을 통하여 얻을 수 있는 신호처리속도의 향상이 더 크다. 본 논문에서는 먼저 마이크로전자에 응용되기 위한 절연재료의 요구조건을 살펴보고, 지금까지 개발된 저유전율 고분자재료들을 간략하게 소개할 예정이다. 아울러 유전상수를 낮추기 위하여 최근 개발된 기공을 갖는 고분자재료들과 이들을 제조하기 위한 공정에 대해서도 간략하게 소개할 예정이다.

  • PDF

고체산화물 연료전지의 양극재료용 초미분체 NiO/YSZ 복합체 재료합성 연구 (Synthesis of Ultrafine NiO/YSZ Composite Powder for Anode Material of Solid Oxide Fuel Cells)

  • 최창주;김태성;황종선;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 1999
  • Ultrafine NiO/YSZ (Yttria-Stabilized Zirconic) composite powders were prepared by using a glycine nitrate process (GNP) for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal ions occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with $N_2$ absorption, scanning and transmission electron microscopies. Strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$^{+}$ After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal microstructure very fine Ni Particles of 3-5${\mu}{\textrm}{m}$ were distributed uniformly and fine pores around Ni metal particles were formed, thus, leading to an increase of the triple phase boundary among gas, Ni and YSZ.Z.

  • PDF