• 제목/요약/키워드: Material safety data sheet

Search Result 64, Processing Time 0.02 seconds

Study on Improvement Measures for Prevention and Countermeasure of Chemical Accident (화학사고 예방 및 대책에 대한 개선방안에 관한 연구)

  • Lee, Deok-Jae;Lee, Tae-Hyung;Shin, Chang-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.137-143
    • /
    • 2016
  • The use of chemicals is increasing due to industrial advancement and diversification. In addition, the number of chemical accidents are increasing at the same time. A multifaceted effort in chemical accidents is needed for efficient prevention and countermeasures. This paper presents, under the current Act, a chemical accident case, including the material safety data sheet (MSDS) through the chemical accident prevention and measures for improvement with regard to research.

Dental Hygienist's Harmful Factor Exposure and Recognition of Material Safety Data Sheets of Workplace Type (치과위생사의 근무기관 유형별 유해인자 노출과 물질안전보건자료 인식 연구)

  • Kim, Hae-Kyeong;Kim, Ji-Young;Oh, Na-Rae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.540-549
    • /
    • 2018
  • This study was conducted on 238 dental hygienists working in Daegu and Gyeongbuk area. In order to understand the status of harmful transmission of dental materials by type of work, we compared the differences in exposure time and work environment characteristics of hospital types and investigated the difference in the degree of recognition of material safety data. The results of the study were as follows: In case of hospitals, the exposure time of dust generated from chemicals was the longest. Resin filling, contact with disinfectant. 37 workers (29.4%) and 14 workers (12.5%) answered that they perceive the question about whether they are aware of the material safety data sheet (MSDS) for dental materials. There were 18 hospital workers and 6 clinic workers who had experience reading MSDS before using dental materials. The respondents who answered that they provided the material safety data of the dental materials used had a 2.39 times MSDS in hospital workers. Therefore, by recognizing the health hazards of chemical substances in accordance with the characteristics of each type of hospital and continuing to conduct health and safety education, the work environment should be improved by establishing proper recognition of MSDS information. It suggests the necessity of a system that can strengthen the management of chemical information provision and guarantee the strategic approach and workers' right to know.

Development of MSDS Map for Visual Safety Management of Hazardous and Chemical Materials (유해화학물질의 시각적 안전관리를 위한 MSDS 지도 개발)

  • Shin, Myungwoo;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.48-55
    • /
    • 2019
  • For preventing the accidents generated from the chemical materials, thus far, MSDS (Material Safety Data Sheet) data have been made to notify how to use and manage the hazardous and chemical materials in safety. However, it is difficult for users who handle these materials to understand the MSDS data because they are only listed based on the alphabetical order, not based on the specific factors such as similarity of characteristics. It is limited in representing the types of chemical materials with respect to their characteristics. Thus, in this study, a lots of MSDS data are visualized based on relationships of the characteristics among the chemical materials for supporting safety managers. For this, we used the textmining algorithm which extracts text keywords contained in documents and the Self-Organizing Map (SOM) algorithm which visually addresses textual data information. In the case of Occupational Safety and Health Administration (OSHA) in the United States, the guide texts contained in MSDS documents, which include use information such as reactivity and potential risks of materials, are gathered as the target data. First, using the textmining algorithm, the information of chemicals is extracted from these guide texts. Next, the MSDS map is developed using SOM in terms of similarity of text information of chemical materials. The MSDS map is helpful for effectively classifying chemical materials by mapping prohibited and hazardous substances on the developed the SOM map. As a result, using the MSDS map, it is easy for safety managers to detect prohibited and hazardous substances with respect to the Industrial Safety and Health Act standards.

Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne (노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • For process safety, fire and explosion characteristics of combustible materials handled at industrial fields must be available. The combustion properties for the prevention of the accidents in the work place are flash point, fire point, explosion limit, and autoignition temperature (AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. In the chemical industries, n-ethylaniline which is widely used as a raw material of intermediate products and rubber chemicals was selected. For safe handling of n-ethyl aniline, the flash point, the fire point and the AIT were measured. The lower explosion limit (LEL)of n-ethylaniline was calculated using the lower flash point obtained in the experiment. The flash points of n- ethylaniline by using the Setaflash and Pensky-Martens closed-cup testers measured $77^{\circ}C$ and $82^{\circ}C$, respectively. The flash points of n-ethylaniline using the Tag and Cleveland open cup testers are measured $85^{\circ}C$ and $92^{\circ}C$, respectively. The AIT of the measured n-ethyl aniline by the ASTM E659 apparatus was measured at $396^{\circ}C$. The LEL of n-ethylaniline measured by Setaflash closed-cup tester at $77^{\circ}C$ was calculated to be 1.02 vol%. In this study, it was possible to predict the LEL by using the lower flash point of n-ethylaniline measured by closed-cup tester. The relationship between the ignition temperature and the ignition delay time of the n-ethylaniline proposed in this study makes it possible to predict the ignition delay time at different ignition temperatures.

An analysis of Volatile Organic Compounds for the Application of Petroleum-based UVCB Substances to the Occupational Safety and Health Act (석유계 UVCB 물질의 산업안전보건법 규제 적용을 위한 일부 휘발성 유기화합물 분석)

  • Jeong-Hee, Han;Na-Young, Park;Na-Roo, Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.371-380
    • /
    • 2022
  • Objectives: To ensure that employers handling petroleum compounds understand whether petroleum-based UVCB (unknown or variable composition, complex reaction products, or biological materials) substances contain hazardous substances and comply with the Occupational Safety and Health Act, petroleum-based UVCB substances were analyzed and the results from samples were compared with MSDS (Material Safety Data Sheet) contents. Methods: Twenty-one petroleum samples were analyzed using GC-MS (Gas Chromatography-Mass Spectrometry), targeting ten volatile organic compounds regulated by the Occupational Safety and Health Act. Results: The target chemicals were detected in 13 out of 21 samples. All 13 samples were in the naphtha (low boiling point naphthas (gasolines)) group. There were also naphtha group samples containing 2% benzene. Some naphtha samples used as solvents contained about 1% benzene. Conclusions: This study shows that naphtha group petroleum substances contain hazardous chemicals in many cases. In particular, if benzene, n-hexane, and toluene with low occupational exposure limits are contained above the limit concentration. Such information should be delivered in the article on MSDS legal regulations.

Measurement of Flash Points and Autoignition Temperatures for Xylene Isomers (크실렌 이성질체의 인화점과 최소자연발화온도의 측정)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.40-45
    • /
    • 2009
  • In order to investigate the compatibility of data in MSDS(Material Safety Data Sheet), the flash point of xylene isomer was measured by using Pensky-Martens closed cup (ASTM D93), Setaflash closed cup(ASTM D3278), Tag open cup(ASTM D1310), and Cleveland open cup (ASTM D92) testers. Also, the AITs(autoignition temperatures) of xylene isomers were measured by using ASTM E659-78 tester. The measured the flash points and the AITs were compared with literatures and MSDS in KOSHA(Korea Occupational Safety and Health Agency). The measured the flash points and the AITs were different from those in literatures and MSDS. As a result, this paper is shown that it is needed to investigate combustion characteristics of xylene isomer for the fire safety objectives.

  • PDF

A study on the provide of CMR substances information for Threshold Limit Values (TLVs) chemicals in KMoEL (노출기준 설정 화학물질의 CMR물질 정보 제공에 관한 연구)

  • Lee, Kwon Seob;Lee, Hye Jin;Lee, Jong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Objectives: This study was performed to provide workplaces with political guidelines that apply international CMRs (Carcinogens, Mutagens, Reproductive toxins) information to Public Notice of TLVs (Threshold Limit Values). We analyzed information supply status about CMRs of international agencies and compared substances for which TLVs are set in KMoEL (Ministry of Employment and Labor in Korea). Methods: We referred to the reliable literature about classification criteria of CMRs corresponding to UN GHS (Globally Harmonized System of classification and Labeling of chemicals) and Public Notice No. 2009-68 'Standard for Classification, Labeling of Chemical Substance and Material Safety Data Sheet' in KMoEL. The classification system of CMRs in professional organizations (IARC, NTP, ACGIH, EU ECHA, KMoEL, etc.) was investigated through the internet and literature. Conclusions: 191 chemical substances among total 650 substances with TLVs are classified as carcinogens. Also, 43 substances classified as mutagens, and 44 as reproductive toxicants. These results suggest that the information of CMRs in Public Notice of TLV will be reorganized to 191 carcinogens, 43 mutagens, and 44 reproductive toxicants.

Measurement and Prediction of the Combustible Properties of n-Butyl methacrylate(n-BMA) (n-Butyl methacrylate(n-BMA)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.42-47
    • /
    • 2016
  • The combustible properties(flash point, explosion limit and autoignition temperature) are the important safety items which are considered in the typical MSDS(material safety data sheet). In this study, for the safe handling of n-butyl methacrylate(n-BMA) being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of n-butyl methacrylate was experimented. And, the lower explosion limit of n-butyl methacrylate was calculated by using the lower flash point obtained in the experiment. The flash points of n-butyl methacrylate by using the Setaflash and Pensky-Martens closed-cup testers measured $44^{\circ}C$ and $51^{\circ}C$, respectively. The flash points of n-butyl methacrylate by using the Tag and Cleveland open cup testers are measured $53^{\circ}C$. The AIT of n-butyl methacrylate by ASTM 659E tester was measured as $295^{\circ}C$. The lower explosion limit by the measured flash point $44^{\circ}C$ was calculated as 0.85 vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

Analytical Study on Strength Safety of LPG Mini Tank with Column for Level Gauge (레벨게이지용 컬럼을 설치한 LPG 미니탱크의 강도안전성에 관한 해석적 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.46-50
    • /
    • 2019
  • In this study, the strength stability of an LPG mini tank with a storage capacity of about 250 kg was analyzed by FEM. According to the results of the FEM analysis, it is preferable that the corner radius of the LPG mini tank having a storage capacity of 250 kg is designed to be 175 to 205 mm. Generally, the larger the corner radius of the end plate of the gas storage tank, the higher the safety of the strength, but the volume or capacity of the tank is reduced. Therefore, it is important to derive the optimum design data. Further, in order to securely design the strength of the gas tank, the thickness of the tank is designed to be thick. However, when the thick steel sheet is used, the material and the transportation costs are increased. The result shows that it is preferable to select the optimum thickness of the steel sheet from 4.5 to 5.5 mm. Using the level gauge type of column on the central axis of the gas tank, the safety strength of the LPG tank can be enhanced as much as twice, compared with the tank of the existing level gauge to measure the liquid level by piercing the side wall of the tank.

Survey of Actual Conditions of Material Safety Data Sheet and Quantitative Risk Assessment of Toxic Substances : Substitutes for Degreasing Agents (일부 대체세정제 제조업체의 물질안전보건자료의 실태와 그 화학물질의 유해성 평가에 관한 연구)

  • Yoon, Chong-Guk;Jeon, Tae-Won;Chung, Chin-Kap;Lee, Myung-Hee;Lee, Sang-Il;Cha, Sang-Eun;Yu, Il-Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.18-26
    • /
    • 2000
  • Since the regulation of MSDS (Material Safety Data Sheets) had started from July 1996, employers were required to furnish MSDS for the chemicals in use in their workplace. However, many MSDS did not contain upright information for the chemicals, and they were not updated regularly, and were not written in the standard format required by the Industrial Safety and Health Act (ISHA). The purposes of this study were 1) to examine the reliability of MSDS for mixed solvents, 2) to provide reliable MSDS to employers or employees, 3) to find out any difficulties in implementing MSDS after the initiation, and 4) to promote regular MSDS updating and to ensure the reliability of MSDS for chemical manufacturers. To check the reliability of MSDS of mixed chemicals, 21 samples of mostly degreasing solvents were collected along with their MSDS from the work place. The samples were analyzed by gas chromatography-mass selective detector(GC-MSD). Their components were classified as saturated hydrocarbon, cyclic hydrocarbon, aromatics, and halogen containing hydrocarbon, and the amount of each class were measured. Manufacture's MSDS were compared with the actual composition of the collected samples, and further examined the reliability by checking whether the chemicals analyzed were included in the MSDS correctly. Finally, each item of MSDS was evaluated whether the MSDS correspond to the regulation required by ISHA. The results were following: 1) most of the degreasing solvents in MSDS were incorrect in their composition and contents, 2) the information in the MSDS including hazard classification, exposure level, toxicity, regulatory information were incorrectly provided, and 3) some MSDS did not disclose carcinogens in their MSDS. Continuous monitoring of MSDS was required to ensure reliability of MSDS. The Chemicals containing hydrocarbons from C10-C15 need to be tested to provide toxicity data. In addition, governmental support for providing correct MSDS was recommended to ensure reliability of MSDS. The MSDS regulation relating to the confidential business information may need to be revised to ensure reliability of MSDS.

  • PDF