• Title/Summary/Keyword: Material removal amount

Search Result 145, Processing Time 0.029 seconds

A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics (사용 후 유리세라믹(Lithium-Aluminum-Silicate)을 활용한 중금속 제거 기초 연구)

  • Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.49-55
    • /
    • 2022
  • In this study, the heavy metal ions (of Pb, Cd, Cr, and Hg) in wastewater were removed using a spent Li2O-Al2O3-SiO2-based crystallized glass previously used as an induction top plate material. Changes in the removal efficiency of heavy metals according to different reaction parameters, such as the amount of zeolite used as a heavy-metal adsorbent, adsorption time, initial concentration of the heavy metals, and pH of the initial solution, were investigated. As the amount of zeolite added increased, the heavy-metal removal efficiency also increased. Adsorption time had a considerable influence on adsorption characteristics, and the removal efficiency of all heavy metals increased with increasing adsorption time. In the case of Cd, the removal efficiency was greatly improved depending on the adsorption time. The initial concentration of the heavy-metal solution did not affect the removal efficiency; however, the initial pH of the heavy-metal solution affected the removal efficiency. More specifically, the removal efficiency of Cd increased while that of Pb and Cr decreased with increasing pH. The adsorption characteristics of Hg were not significantly affected by pH.

Adsorption of Non-degradable Eosin Y by Activated Carbon (활성탄에 의한 난분해성 염료인 Eosin Y의 흡착)

  • Lee, Min-Gyu;Kam, Sang-Kyu;Suh, Keun-Hak
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.623-631
    • /
    • 2012
  • The adsorption behavior of Eosin Y on activated carbon (AC) in batch system was investigated. The adsorption isotherm could be well fitted by the Langmuir adsorption equation. The kinetics of adsorption followed the pseudo-second-order model. The temperature variation was used to evaluate the values of free energy (${\Delta}G^{\circ}$), enthalpy (${\Delta}H^{\circ}$) and entropy (${\Delta}S^{\circ}$). The positive value of enthalpy change ${\Delta}H^{\circ}$ for the process confirms the endothermic nature of the process and more favourable at higher temperature, the positive entropy of adsorption ${\Delta}S^{\circ}$ reflects the affinity of the AC material toward Eosin Y and the negative free energy values ${\Delta}G^{\circ}$ indicate that the adsorption process is spontaneous. With the increase of the amount of AC, removal efficiency of Eosin Y was increased, but adsorption capacity was decreased. And adsorption capacity was increased with the decrease of particle size. With the increase of the amount of AC, removal efficiency of Eosin Y was increased, but adsorption capacity was decreased. And adsorption capacity was increased with the decrease of particle size.

Cesium removal in water using magnetic materials ; A review (자성체 물질을 이용한 수중의 세슘제거 동향)

  • Yeo, Wooseok;Cho, Byungrae;Kim, Jong Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.395-408
    • /
    • 2018
  • Even after the Fukushima nuclear accident in 2011, the rate of production of electric energy using nuclear energy is increasing, but there is a great danger such as the radioactive waste produced when using nuclear power, the catastrophic accident of nuclear power plant, and connection with nuclear weapons. In particular, Cs present in the ionic form of alkaline elements has a long half-life (30.17 years) because it is readily absorbed by the organism and emits intense gamma rays, thus presenting a serious radiation hazard. Therefore, it must be completely removed before it can be released into the natural ecosystem, because it can adversely affect not only humans but also natural ecosystems. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. In addition, researches have been doing to synthesize magnetic materials with adsorbents such as HCF and PB, and it shows a great effect in the removal rate of Cs present in wastewater or the maximum Cs adsorption amount. In particular, when a magnetic material was applied, excellent results were obtained in which only Cs was selectively removed from other cations. However, new problems such as applicability in the sea where Cs is directly released, applicability in various pH ranges, and failure to preserve the magnetizing force possessed by the magnetic body have been found. However, researches using ferromagnetic field with stronger magnetic properties than those of magnetic bodies is considered to be insufficient. Therefore, it is considered that if the researches combining the ferromagnetic field with the magnetization ability and functional adsorbents more actively, the radioactive material Cs which adversely affects the natural ecosystem can be effectively removed.

Coagulation Treatment of Landfill Leachate Using Acid Mine Drainage(AMD) (산성폐광폐수를 이용한 매립지 침출수의 응집처리)

  • 최봉종;이승목;이상호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.129-133
    • /
    • 2000
  • The objective of this study was to invetigate the coagulation effects of landfill leachate by using Acid Mine Drainage(AND). The coagulation efficiency was investigated by mixing landfill leachate with F $e^{+3}$ solution earned by oxidation of pyrite(AMD). In the results of this experiment, it was found that the amount of removed COD and SS was approximately 30% respectively by mixing at the ratio of AMD three to leachate one. And it showed highest turbidity removal efficiency at all mixing ratio. Concentration of Fe was decreased with increasing mixing ratio, however it was increased inversely at mixing ratio 4. Optimal mixing ratio was 3 at the results obtained by leachate coagulation experiments. Also removal efficiency at mixing ratio 3 corresponded to 500mg/$\ell$ of FeC $l_3$ dosage. it was suggested that pretreatment by mixing of AMD and leachate remove both suspended organic material of leachate and metal of AMD.

  • PDF

Radon Removal Efficiency of Activated Carbon Filter from Coconut (코코넛 기반 활성탄 필터의 라돈 제거 효율)

  • Yun-Jin Ahn;Gi-Sub Kim;Tae-Hwan Kim;Sang-Rok Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences plans to produce 225Ac, a therapeutic radio-pharmaceutical for precision oncology, such as prostate cancer. Radon, a radioactive gas, is generated by radium, the target material for producing 225Ac. The radon concentration is expected to be about 2000 Bq·m-3. High-concentration radon-generating facilities must meet radioactive isotope emission standards by lowering the radon concentration. However, most existing studies concerning radon removal using activated carbon filters measured radon levels at concentrations lower than 1000 Bq·m-3. This study measured 222Rn removal of coconut-based activated carbon filter under a high radon concentration of about 2000 Bq·m-3. The 222Rn removal efficiency of activated carbon impregnated with triethylenediamine was also measured. As a result, the 222Rn removal amount of the activated carbon filter showed sufficient removal efficiency in a 222Rn concentration environment of about 2000 Bq·m-3. In addition, despite an expectation of low radon reduction efficiency of Triethylenediamine-impregnated activated carbon, it was difficult to confirm a significant difference in the results. Therefore, it is considered that activated carbon can be used as a radioisotope exhaust filter regardless of whether or not Triethylenediamine is impregnated. The results of this study are expected to be used as primary data when building an air purification system for radiation safety management in facilities with radon concentrations of about 2000 Bq·m-3.

Photocatalytic Oxidation of Indoor Air Volatile Organic Compounds (VOCs) in pub Level

  • Jo, Wan-Kuen;Kim, Dong-Hyun;Ki, Jae-Chang;Huh, Jeung-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.157-168
    • /
    • 2003
  • This study evaluated the technical feasibility of the application of titanium oxide (TiO$_2$) photocatalysis for the removal of VOCs in low ppb concentrations commonly associated with non -occupational indoor air quality issues. A series of experiments were conducted to evaluate four parameters (relative humidity (RH), hydraulic diameter (HD), photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VOCs. None of the target VOCs presented significant dependency on the RH, which is inconsistent with a few previous studies. However, it is noted that the three parameters (HD, RM and IPS) should be considered for better VOCs removal efficiencies for the application of TiO$_2$ photocatalytic technology for cleansing non -occupational indoor air. The PCO destruction of VOCs at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO would be negligible in comparison to the indoor CO levels. These results can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

A study of dissolving treatment of covered material on metal surface (금속표면 피복물질의 분해처리에 관한 연구)

  • Lee, Cheal-Gyu;Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.112-119
    • /
    • 2005
  • This study reports on the efficiency of cleaning enameled magnet wire using a sulfuric acid $H_2SO_4$ and removal of dissolved organic material using hydrogen peroxide $H_2O_2$ and nitric acid $HNO_3$ at $80^{\circ}C$. The method involves the addition of pure $H_2SO_4$ and $H_2O_2$ or $HNO_3$. Layers of enameled organic material were dissolved by 90% $H_2SO_4$ and the solution was maintained as 35% $H_2O_2$ or 60% $HNO_3$. $H_2O_2$ content in aqueous $H_2O_2$ was maintained as 8.8 : 1.0. An initial concentration of $H_2SO_4$ in dissolution conditions was accomplished within 15 min, with a stripping time of about 2 h. The concentrations of $H_2O_2$ and $HNO_3$ in the processing bath were relatively low, but sufficient enough to produce an effective amount of power in the bath for the removal of the enamel material. The cleaning effect of enameled organic material involves the dehydration by $H_2SO_4$ and the oxidation by $H_2O_2$ or $HNO_3$.

Removal of Methylene Blue by Modified Carbon Prepared from the Sambucus Nigra L. plant

  • Manoochehri, Mahboobeh;Amooei, Khadijeh
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • An increase in population initiating rapid industrialization was found to consequently increase the effluents and domestic wastewater into the aquatic ecosystem. In this research the potentialities of Sambucus nigra L. (SNL) plant in the remediation of water, contaminated with methylene blue (MB), a basic dye were investigated. SNL was chemically impregnated with $KHCO_3$. Operating variables studied were pH, amount of adsorbent and contact time. In general, pH did not have any significant effect on colour removal and the highest adsorption capacity was obtained in 0.035 g MB/g-activated carbon. The Langmuir, Freundlich, Temkin and Dubinin-Radushkevich adsorption models were applied to describe the equilibrium isotherms. The adsorption isotherm data were fitted to the Temkin isotherm. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order and chemisorption pseudo-second-order kinetic models. The sorption process obeyed the pseudo-second-order kinetic model. The surface area, pores volume and diameter were assessed by the Brunauer-Emmett-Teller and Barrett-Joyner-Halenda methods. The results were compared to those from activated carbon (Merck) and an actual sample. The results indicate that SNL can be employed as a natural and eco-friendly adsorbent material for the removal of dye MB from aqueous solutions.

Removal of Cu (II) from aqueous solutions using magnetite: A kinetic, equilibrium study

  • Kalpakli, Yasemen
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.119-133
    • /
    • 2015
  • Water pollution means that the physical, chemical and biological properties of water are changing. In this study, adsorption was chosen as the treatment method because it is an eco-friendly and low cost approach. Magnetite is a magnetic material that can synthesize chemical precipitation. Magnetite was used for the removal of copper in artificial water samples. For this purpose, metal removal from water dependent on the pH, initial concentration of metal, amount of adsorbent and effect of sorption time were investigated. Magnetite was characterized using XRD, SEM and particle size distribution. The copper ions were determined by atomic absorption spectrometry. The adsorption of copper on the magnetite was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 10 to $50mg\;l^{-1}$. Optimum conditions for using magnetite were found to be concentration of $10mg\;L^{-1}$, pH: 4.5, contact time: 40 min. Optimum adsorbent was found to be 0.3 gr. Furthermore, adsorption isotherm data were analyzed using the Langmuir and Freundlich equations. The adsorption data fitted well with the Freundlich ($r^2=0.9701$) and Langmuir isotherm ($r^2=0.9711$) equations. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were described well by a pseudo-second-order kinetic model.

Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning (저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해)

  • Jo, Wan Geun;Gwon, Gi Dong;Choe, Sang Jun;Song, Dong Ik
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.767-777
    • /
    • 2004
  • This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.