• Title/Summary/Keyword: Material properties

Search Result 17,982, Processing Time 0.05 seconds

Fabrication of LTCC Tape and Its Microwave Dielectric Properties (LTCC Tape 제조 및 고추파 유전특성 평가)

  • Lee, Kyoung-Ho;Choi, Byung-Hoon;Ahn, Dal;Sung, Jung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.382-385
    • /
    • 2001
  • In the previous study, a new LTCC material in the PbWO$_4$-TiO$_2$-B$_2$O$_3$-CuO system was introduced. The developed material can be sintered at 850$^{\circ}C$ and its dielectric properties are $\varepsilon$$\sub$r/=20-25, Qxf$\sub$o/=30000∼500000Hz, and $\tau$$\sub$f/=0.2∼30ppm/$^{\circ}C$, respectively Therefore this material can be used as a LTCC substrate material for fabrication of multilayered high frequency communication module set. In present study, using this material, tape casting condition was established. With this condition, a multilayered resonator was fabricated and its electrical properties were examined. In present study, an antenna-duplexer module was also fabricated. Frequency characteristics of as-fabricated antenna-duplexer module was compared with simulation results.

  • PDF

The Effect of Grain Refiner on Ni-Fe-P Alloy Electrodeposition (Ni-Fe-P 합금전착에 미치는 Grain Refiner의 영향)

  • 서무홍;김동진;김정수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.437-443
    • /
    • 2003
  • The effects of additive(grain refiner, GR) on process efficiency of the Ni-Fe-P alloy electrodeposition and the material properties of the deposit were investigated. Electrochemical properties of the deposits were investigated using polarization and electrochemical impedance techniques, and the material properties of the deposits were characterized through inductively coupled plasma(ICP), spiral contractometer, XRD, SEM and TEM. When the additive was added into the electrodeposition bath, current efficiency, Ni content and corrosion resistance of the deposit increased, whereas residual stress, surface roughness and grain size of the deposit decreased.

Influence of sine material gradients on delamination in multilayered beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • The present paper deals with delamination fracture analyses of the multilayered functionally graded non-linear elastic Symmetric Split Beam (SSB) configurations. The material is functionally graded in both width and height directions in each layer. It is assumed that the material properties are distributed non-symmetrically with respect to the centroidal axes of the beam cross-section. Sine laws are used to describe the continuous variation of the material properties in the cross-sections of the layers. The delamination fracture is analyzed in terms of the strain energy release rate by considering the balance of the energy. A comparison with the J-integral is performed for verification. The solution derived is used for parametric analyses of the delamination fracture behavior of the multilayered functionally graded SSB in order to evaluate the effects of the sine gradients of the three material properties in the width and height directions of the layers and the location of the crack along the beam width on the strain energy release rate. The solution obtained is valid for two-dimensional functionally graded non-linear elastic SSB configurations which are made of an arbitrary number of lengthwise vertical layers. A delamination crack is located arbitrary between layers. Thus, the two crack arms have different widths. Besides, the layers have individual widths and material properties.

Glass powder admixture effect on the dynamic properties of concrete, multi-excitation method

  • Kadik, Abdenour;Boutchicha, Djilali;Bali, Abderrahim;Cherrak, Messaouda
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.671-678
    • /
    • 2020
  • In this work, the dynamic properties of a high performance concrete containing glass powder (GP) was studied. The GP is a new cementitious material obtained by recycling waste glass presenting pozzolanic activity. This eco-friendly material was incorporated in concrete mixes by replacing 20 and 30% of cement. The mechanical properties of building materials highly affect the response of the structure under dynamic actions. First, the resonant vibration frequencies were measured on concrete plate with free boundary conditions after 14, 28 and 90 curing days by using an alternative vibration monitoring technique. This technique measures the average frequencies of several excitations done at different points of the plate. This approach takes into account the heterogeneity of a material like concrete. So, the results should be more precise and reliable. For measuring the bending and torsion resonant frequencies, as well as the damping ratio. The dynamic properties of material such as dynamic elastic modulus and dynamic shear modulus were determined by modelling the plate on the finite element software ANSYS. Also, the instantaneous aroused frequency method and ultrasound method were used to determine the dynamic elastic modulus for comparison purpose, with the results obtained from vibration monitoring technique.

Analysis of Rainfall Induced Infiltration Considering Occluded Air in Unsaturated Soils (갇힌 공기를 고려한 불포화토 침투 해석에 관한 연구)

  • Lee, Joon-Yong;Yu, Chan;Kim, Uk-Gie;Kim, Dong-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.129-139
    • /
    • 2012
  • Accurate modeling rainfall induced landslide and slope stability requires a detailed knowledge of the distribution of material strength characteristics and suction distribution. However, material properties obtained from the drying cycle are still used for infiltration analysis in many cases, even though material properties of wetting cycle are quite different from those of drying cycle due to hydraulic hysteresis and air occlusion. Therefore, the selection of proper material properties such as soil-water retention curve (SWRC) and the hydraulic conductivity function (HCF) reflecting characteristics of wetting cycle and air occlusion is an essential prerequisite in order to simulate the infiltration phenomena and to predict the suction and water content distribution in unsaturated soils. It is concluded that the simulation of infiltration with material properties from the drying cycle did not reasonably match with experimental outputs. Further discussion is made on how to describe the material properties considering air occlusion during wetting cycle over the entire suction range in order to simulate infiltration phenomena.

Evaluation of mechanical properties of welding materials by an instrumented indentation test (계장화 압입시험에 의한 용접부의 물성 평가)

  • Koo, Byung-Chun;Kwon, Dong-Il;Choi, Yeol
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.117-119
    • /
    • 2003
  • When material properties depend much on positions in a material or it is difficult to make test specimens from a material or component, an instrumented indentation test described in ISO 14577-1, 14577-2 or KS B 0950 can be used to measure material properties and damage. In this study, first of all, the principals of the instrumented indentation test, KS B 0950 are introduced and yield strengths, tensile strengths and work hardening exponents of base materials, heat affected zones and weld materials are measured. In addition, the influence of post-weld heat treatment on the material properties are investigated.

  • PDF

Properties of Blood Compatible Crosslinked Blends of $Pellethene^{(R)}$/Multiblock Polyurethanes Containing Phospholipid Moiety/C-18 Alkyl Chain

  • Yoo, Hye-Jin;Kim, Han-Do
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.596-603
    • /
    • 2008
  • To improve the mechanical properties, dimensional stability and blood compatibility, the biomedical material $Pellethene^{(R)}$ was blended with multiblock polyurethane (MPU) containing phospopholipid/long alkyl chain (C-18) at the various MPU contents and crosslinked using dicumyl peroxide as a crosslinking agent. The maximum MPU content for stable $Pellethene^{(R)}$/MPU blended films was approximately 30 wt%. The optimum crosslinking agent content and crosslinking time with respect to the mechanical properties were 4 wt% and 3 h, respectively. The mechanical properties (tensile strength and elongation at break) and water absorption of the crosslinked blend film increased with increasing MPU content. The test of platelet adhesion on the surfaces of the crosslinked blend film showed a decrease in the level of platelet adhesion from 70% to 6% with increasing MPU content from 0 to 30 wt%. These results suggest that the crosslinked $Pellethene^{(R)}$/MPU-30 (MPU content: 30 wt%) sample has strong potential as a novel material for blood compatible material applications.

Development and Verification of Micro-indentation Technique for Material Property Evaluation of Hyper-elastic Rubber (초탄성고무 물성평가용 미소압입시험법 개발 및 검증)

  • Lee, Hyung-Il;Lee, Jin-Haeng
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.132-137
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via [mite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions. which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress.strain curve with an average error less than 3%.

  • PDF

Hoop Ring Test Method to Evaluate the Fiber Material Properties of Composite Motor Case (Hoop ring 시험방법을 이용한 복합재연소관의 섬유방향 물성 평가)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyung-Kun;Lee, Sang-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.429-432
    • /
    • 2009
  • The deformation and burst pressure of composite motor case highly depends on fiber material properties. Therefore, measuring exact fiber material properties is a priority item to develop a advanced composite motor case. However, the fiber material properties in composite motor case is very sensitive on the various processing variables (equipment, operator and environmental condition etc..)and size effect, so the fiber material properties can't be measured exactly from the existing specimen test method. This paper suggests a newly developed test method, hoop ring test, that is capable of pressure testing with ring specimens extracted from real composite motor case. The results of hoop ring test showed excellent agreement with measured fiber material properties from hydro-burst test with full scale composite motor cases.

  • PDF

Development of Nuclear Piping Integrity Expert System(I) - Evaluation Method RecomMendation and Material Properties Inference - (원자력배관 건전성평가 전문가시스템 개발(1) - 평가법 제시 및 재료물성치 추론 -)

  • Kim, Yeong-Jin;Seok, Chang-Seong;Choe, Yeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.575-584
    • /
    • 1996
  • The objective of this paper is to develop an expert system for nuclear piping integrity. This paper describes the selection methodology of integrity evalution method and the inference of material properties. To select the integrity evaluation method, the weight factor for respective material properties was obtained by the sensitivity analysis of the effect of material properties on integrity evaluation method. Subsequently the possession ratio for respective integrity evaluation method was computed, and the most appropriate integrity evaluation method for given input information is selected. In the material properties inference, stress-strain curves and J-R curves were predicted from tensile properties such as yield strength and tensile strength.