• Title/Summary/Keyword: Material law

Search Result 1,128, Processing Time 0.029 seconds

A Study on the Development of Stress Optic Law Considering Residual Stress in Photoelastic Experiment(II) -Application of Stress Optic Law Considering of Residual Sterss- (잔류응력을 고려한 광탄성실험의 광응력법칙 개발에 관한 연구 (2) -잔류응력을 고려한 광응력법칙의 응용-)

  • 서재국;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1810-1821
    • /
    • 1995
  • Photoelastic experiment has been used to analyze stress of structure and stress in the vicinity of crack tip etc.. Model experiment such as photoelastic experiment has been restricted by problem of residual stress in the photoelastic model material. They are generated by molding, cutting and time effects etc.. They produce some errors in the results of photoelastic experiment data. In this paper, stress optic law considering residual stress already developed by authors was applied to the stress concentration problem and fracture mechanics. Although the specimen was bad with residual stress, we could obtain good results by using the stress optic law considering residual stress. It was found that the stress optic law of photoelastic experiment could be applied to the stress analysis of bimaterial.

What is the Duty to Disclose a Material Circumstances by the Assured, M.I.A., 1906 (영국 해상보험법상 피보험자의 고지의무에 관하여)

  • 박용섭
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.1
    • /
    • pp.83-103
    • /
    • 1983
  • The duty of disclosure it is a preliminary requirement to effect marine insurance contract between the assured and the underwriter. The contract of Marine Insurance is called a uberrimae fidei contract, the assured, therefore, in the law of marine insurance, shall communicate a material circumstances to the latter before the policy to be effected. As growing the maritime industries in Korea, there is forming a larger marine insurance market, accordingly, and having a wide relation with the practice of the marine insurance in England. It means that the most of the legal theories of the marine insurance would be adopted by the English Marine Insurance Case Law and M.I.A., 1906. From the viewpoint of the said this author has tried out to study what is the duty of disclosure of the marine insurance based upon the English Marine Case Law.

  • PDF

PEDOT:PSS and Graphene Oxide Composite Hydrogen Gas Sensor (전도성 고분자 PEDOT:PSS와 산화 그래핀 복합물 수소 가스 센서)

  • Maeng, Sunglyul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.69-73
    • /
    • 2018
  • The power law is very important in gas sensing for the determination of gas concentration. In this study, the resistance of a gas sensor based on poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate+graphene oxide composite was found to exhibit a power law dependence on hydrogen concentration at $150^{\circ}C$. Experiments were carried out in the gas concentration range of 30~180 ppm at which the sensor showed a sensitivity of 6~9% with a response and recovery time of 30s.

A study on the v-t characteristics of interfaces between Toughened Epoxy and Rubber with Inverse Power Law (역승법칙을 이용한 터픈드 Epoxy/Rubber 계면의 V-t 특성에 관한 연구)

  • 박정규;이동규;오현석;신철기;박건호;박우현;이기식;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.437-440
    • /
    • 2000
  • In this study, the interfacial dielectric breakdown phenomenon of interface between Epoxy and Rubber was discussed, which affects the stability of insulation system of power delivery devices. The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law and the long time breakdown life time can be evaluated.

  • PDF

A Study on Electrical Accident of Distributing Cable Termination Considering PL Law Environment (PL법 환경을 고려한 배전 케이블 종단부의 전기적 사고 연구)

  • Kim, Sang-Hyun;Choi, Jae-Hyeong;Choi, Jin-Wook;Baek, Seung-Myeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.178-183
    • /
    • 2009
  • This paper introduces experimental investigates of an accident pattern for the distributing cross linking-polyethylene(XLPE) cable terminations considering product liability(PL) law environment. The influence of defects such as thickness and length decrease of XLPE, an impurity on XLPE and the gap between stress-con of housing and semi-conductor on insulating properties of the termination have been studied. The thickness and length decrease of XLPE decrease ac breakdown strengths. Breakdown traces of XLPE that is damaged by knife displayed ellipse shape. The gap of between stress-con and semiconductor deteriorates dielectric strength of XLPE seriously.

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

Evaluation of Frictional Laws through Analyzing a Friction-Sensitive Long-Pipe Shrinking and Expanding Process (마찰에 민감한 긴 파이프의 축관 및 확관 동시공정의 해석을 통한 마찰법칙의 평가)

  • Choi, In-Su;Eom, Jae-Gun;Jun, Byung-Yoon;Lee, Min-Cheol;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1481-1486
    • /
    • 2007
  • Frictional laws are criticized with emphasis on their application to bulk metal forming simulation in this paper. Coulomb frictional law and constant shear frictional law are investigated in detail in terms of their effect on metal forming process. A friction sensitive bulk metal forming process, a long-pipe simultaneously shrinking and expanding process, is introduced and the problems of the constant shear frictional law are revealed comparing the predictions obtained by the Coulomb frictional law and the constant shear frictional law with the experiments. It is shown that the constant shear frictional law is improper in the case that the normal stress varies very much from position to position and that the normal stress is low compared with flow stress of the adjacent material. It is also shown that the Coulomb frictional constant is more or less affected by the normal stress.

  • PDF

FG-based computational fracture of frequency up-conversion for bistablity of rotating shell: An effective numerical scheme

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.367-376
    • /
    • 2022
  • Theoretical study of vibration distinctiveness of rotating cylindrical are examined for three volume fraction laws viz.: polynomial, exponential and trigonometric. These laws control functionally graded material composition in the shell radius direction. Functionally graded materials are controlled from two or more materials. In practice functionally graded material comprised of two constituent materials is used to form a cylindrical shell. For the current shell problem stainless steel and nickel are used for the shell structure. A functionally graded cylindrical shell is sanctioned into two types by interchanging order of constituent materials from inner and outer side for Type I and Type II cylindrical shell arrangement. Fabric composition of a functionally graded material in a shell thickness direction is controlled by volume fraction law. Variation of power law exponent brings change in frequency values. Influence of this physical change is investigated to evade future complications. This procedure is capable to cater any boundary condition by changing the axial wave number. But for simplicity, numerical results have been evaluated for clamped- simply supported rotating cylindrical shells. It has been observed from these results that shell frequency is bifurcated into two parts: one is related to the backward wave and other with forward wave. It is concluded that the value of backward frequency is some bit higher than that forward frequency. Influence of volume fraction laws have been examined on shell frequencies. Backward and forward frequency curves for a volume fraction law are upper than those related to two other volume fraction laws. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

Finite element based free vibration analysis of sandwich FGM plates under hygro-thermal conditions using zigzag theory

  • Aman Garg;Neeraj Kumar Shukla;M.Ramkumar Raja;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.547-570
    • /
    • 2023
  • In the present work, a comparative study has been carried out between power, exponential, and sigmoidal sandwich FGM plates for free vibration conditions under hygro-thermal conditions. Rules of mixture is used to determine effective material properties across the thickness for power-law and sigmoid sandwich FGM plates. Exponential law is used to plot effective material properties for exponentially graded sandwich FGM plates. Temperature and moisture dependent material properties were used during the analysis. Free vibration analysis is carried out using recently proposed finite element based HOZT. Present formulation satisfies interlayer transverse stress continuity conditions at interfaces and transverse shear stress-free conditions at the plate's top and bottom surfaces. The present model is free from any penalty or post-processing requirements. Several new results are reported in the present work, especially for unsymmetric sandwich FGM plates and exponential and sigmoidal sandwich FGM plates.

Study on the applicability of regression models and machine learning models for predicting concrete compressive strength

  • Sangwoo Kim;Jinsup Kim;Jaeho Shin;Youngsoon Kim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.583-589
    • /
    • 2024
  • Accurately predicting the strength of concrete is vital for ensuring the safety and durability of structures, thereby contributing to time and cost savings throughout the design and construction phases. The compressive strength of concrete is determined by various material factors, including the type of cement, composition ratios of concrete mixtures, curing time, and environmental conditions. While mix design establishes the proportions of each material for concrete, predicting strength before experimental measurement remains a challenging task. In this study, Abrams's law was chosen as a representative investigative approach to estimating concrete compressive strength. Abrams asserted that concrete compressive strength depends solely on the water-cement ratio and proposed a logarithmic linear relationship. However, Abrams's law is only applicable to concrete using cement as the sole binding material and may not be suitable for modern concrete mixtures. Therefore, this research aims to predict concrete compressive strength by applying various conventional regression analyses and machine learning methods. Six models were selected based on performance experiment data collected from various literature sources on different concrete mixtures. The models were assessed using Root Mean Squared Error (RMSE) and coefficient of determination (R2) to identify the optimal model.