• Title/Summary/Keyword: Material flow model

Search Result 626, Processing Time 0.023 seconds

Optimal design of parallel noncontinuous units with feedstock/product storages (원료및 제품저장조를 포함하는 병렬 비연속 공정의 최적설계)

  • Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.532-541
    • /
    • 1997
  • This article derives an analytic solution to determine the optimal size of multiple noncontinuous process and storage units. The total cost to be minimized consists of the setup cost of noncontinuous processing units and the inventory holding cost of feedstock/product storages. A novel approach, which is called PSW(Periodic Square Wave) model, is applied to represent the material flow among non-continuous units and storages. PSW model presumes that the material flow between unit and storage is periodic square wave shaped. The resulting optimal unit size has similar characteristics with the classical economic lot sizing model such as EOQ(Economic Order Quantity) or EPQ(Economic Production Quantity) model in a sense that the unit size is determined as the balance between setup and inventory holding cost. However, the influence of inventory holding cost of PSW model is different from that of EOQ/EPQ model. EOQ/EPQ model includes only the product inventory holding cost but PSW model includes all inventory holding costs around the non-continuous unit with proportional contribution. PSW model is suitable for analyzing interlinked process-storage system. The optimal lot size of PSW model is smaller than that of EOQ/EPQ model. This is quitea remarkable result considering that the EOQ/EPQ model has been is widely used since last half century.

  • PDF

Spatiotemporal chronographical modeling of procurement and material flow for building projects

  • Francis, Adel;Miresco, Edmond;Le Meur, Erwan
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.119-139
    • /
    • 2019
  • Planning and management building projects should tackle the coordination of works and the management of limited spaces, traffic and supplies. Activities cannot be performed without the resources available and resources cannot be used beyond the capacity of workplaces. Otherwise, workspace congestion will negatively affect the flow of works. Better on-site management allows for substantial productivity improvements and cost savings. The procurement system should be able to manage a wider variety of materials and products of the required quality in order to have less stock, in less time, using less space, with less investment and avoiding multiple storage stations. The objective of this paper is to demonstrate the advantages of using the Chronographic modeling, by combining spatiotemporal technical scheduling with the 4D simulations, the Last Planner System and the Takt-time when modeling the construction of building projects. This paper work toward the aforementioned goal by examining the impact that material flow has on site occupancy. The proposed spatiotemporal model promotes efficient site use, defines optimal site-occupancy and workforce-rotation rates, minimizes intermediate stocks, and ensures a suitable procurement process. This paper study the material flow on the site and consider horizontal and vertical paths, traffic flows and appropriate means of transportation to ensure fluidity and safety. This paper contributes to the existing body of knowledge by linking execution and supply to the spatial and temporal aspects. The methodology compare the performance and procurement processes for the proposed Chronographic model with the Gantt-Precedence diagram. Two examples are presented to demonstrate the benefits of the proposed model and to validate the related concepts. This validation is designed to test the model's graphical ability to simulate construction and procurement.

On Constructing an Explicit Algebraic Stress Model Without Wall-Damping Function

  • Park, Noma;Yoo, Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1522-1539
    • /
    • 2002
  • In the present study, an explicit algebraic stress model is shown to be the exact tensor representation of algebraic stress model by directly solving a set of algebraic equations without resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which are based on the principle of material frame indifference and positive semi-definiteness. An a priori test of the explicit algebraic stress model is carried out by using the DNS database for a fully developed channel flow at Rer = 135. It is confirmed that two-point correlation function between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and asymmetric in the wall-normal direction. Thus, a novel composite algebraic Reynolds stress model is proposed and applied to the channel flow calculation, which incorporates non-local effect in the algebraic framework to predict near-wall behavior correctly.

COMPUTER AIDED SCHECULING MODEL OF MATERIALS HANDSLING IN CHEMICAL ANALYSIS FLOOR

  • Fujino, Yoshikazu;Motomatu, Hiroyoshi;Kurono, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.31-34
    • /
    • 1995
  • The automated chemical analysis shop floor are developed for the environmental pollution problems in our chemical analysis center. This shop floor have the several equipments include weight, pour, dry, heater, boiler, mixture, spectroscopy etc. And the material handling components are made up by the stored stack, conveyore, turntables, robot etc. Computer simulation has been an important tool for these complete design problem. We have designed the arangement of chemical equipments and material flow systems by using the simulator "AutoModII". "AutoMoII" is one of the advanced simulator, CAD-like drawing tools with a powerful, engineering oriented language to model control logic and material flow. The result is the modeling of the chemical analysis system in accurate, three dimensional detail. We could designed the set able layout and scheduling system by using the AutoMoII simulator. AutoMoII simulator.

  • PDF

The Improvement of Bearing-Race Forming Process Using UBET Analysis (베어링레이스의 온간성형에서 UBET 해석에 의한 공정개선 및 유동구속조건의 향상)

  • Kim, Young-Ho;Bae, Won-Byong;Park, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.92-100
    • /
    • 1997
  • An upper-bound elemental technique (UBET) analysis is carried out to improve the material flow and to reduce the load of bearing-race forming process. The UBET analysis, which adapts the advantages of stream function and finite element method, is useful for predicting the profile of complex geometric bound- ary. From the UBET analysis, the forming load, the velocity distribution and the stream line of the deformed billet are determined by minimizing the total power consumption with respect to chosen parameters. The results of present UBET analysis are better than those of previous UBET analysis. Experiments have been carried out with model material plasticine billets at room temperature. The theoretical predictions for forming load and flow pattern(stream line) are in good agreement with the experimental results.

  • PDF

Effect of Flow Stress, Friction, Temperature, and Velocity on Finite Element Predictions of Metal Flow Lines in Forgings (유동응력, 마찰, 온도, 속도 등이 단조 중 단류선의 유한요소예측에 미치는 영향)

  • Choi, M. H.;Jin, H. T.;Joun, M. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, the effect of flow stress, friction, temperature, and velocity on finite element predictions of metal flow lines after cylindrical upsetting is presented. An actual three-stage hot forging process involving an upsetting step is utilized and experimental metal flow lines are measured to study the effect of the various process variables. It was found that temperature and velocity for reasonable values of friction have little influence on metal flow lines especially those located deep within the cylinder but that flow stress has a direct influence on the flow lines. It was shown that a pure power law material model cannot reflect the real flow stress of hot material because it underestimates the flow stress especially around the dead-metal zone for the upsetting of a cylindrical specimen. It is thus recommended that a proper lower limit of flow stress be assumed to alleviate this issue.

Studies on The Flow Properties of Semi-Solid Dosage Forms (II) : Temperature-Dependent Flow Behavior of Vaseline (반고형제제의 유동특성에 관한 연구 (제2보) : 바셀린의 온도의존성 유동거동)

  • Kim, Jeong-Hwa;Song, Ki-Won;Jang, Gap-Shik;Lee, Jang-Oo;Lee, Chi-Ho
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.38-47
    • /
    • 1997
  • Using a concentric cylinder type, rheometer. the steady shear flow properties of vaseline were measured over the temperature range of 20~70${\circ}$C. In this paper, the shea rate and temperature dependencies of its flow behavior were investigated and the validity of some flow models was examined. In addition, the flow characteristics over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main findings obtained from this study can be summarized as follows: (1) At relatively lower temperature range, vaseline is a plastic fluid with a yield stress and its flow behavior shows shear-thinning characteristics. (2) As the temperature increases, the value of a yield stress and the degree of shear-thinning become smaller, consequently, the Newtonian flow behavior occurs at a lower shear rate range. (3) At temperature range lower than 45${\circ}$C, the flow behavior shows much stronger temperature dependence, and a larger activation energy is needed for flow. (4) The Herschel-Bulkley model is the most effective one g$^3$ to predict the flow behavior of vaseline having a yield stress. The validity of the Bingham and Casson models becomes more available with increasing temperature. The flow behavior of vaseline at temperature range higher than 45${\circ}$C can be perfectly described by the Newton model.

  • PDF

Flow Visualization in Realistic Arterial Bypass Graft Model

  • Singh, Megha;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Background: Coronary atherosclerosis artery disease is the leading cause of morbidity and mortality. Coronary artery bypass grafting (CABG) which utilizes the saphenous vein graft, has helped in alleviating the suffering of these patients. Newer techniques are being developed to improve upon the techniques. Still there is significant number of failures, leading to re-grafting or re-vascularization. Some studies have helped in identifying the high and low shear stress regions. Further studies based on their realistic models are required. Material, methods and results: we developed the realistic model of fully blocked right coronary with bypass graft placed at angle of $5^0$ with curvature similar to that of artery. Pulsatile flow of birefringent solution through this model by polarized light was visualized. The images of complete flow field in the model were recorded and analyzed. Regions of high flow disturbances which are prone to further changes are identified. Existence of recirculation in the blocked coronary may initiate new blood-tissue interactions deleterious to bypass graft. Conclusion: Our study shows that by selecting the procedure to place bypass graft at minimum angle with curvature similar to that of artery and smooth sutures may improve the life span of the graft. This study also identified that coronary blocked regions contributing by recirculation flow at the proximal and distal regions of bypass which may require further studies.

  • PDF

Experimental study on the fluid flow and material transport around a harbor driven by the tidal effect (조석효과에 의한 항구 모델 주위의 유동 및 물질전달에 관한 실험적 연구)

  • 서용권;문종춘;강종대
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.100-107
    • /
    • 1996
  • In this paper, we report the results of the experimental study on the flow and the mass transport around a square harbor driven by a tidal effect. The model harbor is composed of a uniform water-depth with a straight breakwater. The harbor is connected to the outer ocean by an entrance region having the same shape as the harbor. We investigated two cases, one having another breakwater in the place between the entrance region and the outer ocean, and the other without it, The surface and bottom flow patterns of the model container are visualized by using light particles and dye, respectively. It was shown that the inner harbor and the entrance region have well-organized, large vortical residual flows, and the material transport between the entrance and outer region is however significantly different for two cases; when the breakwater is built between the two regions, the transport is far better than that without it, which is clearly contrary to our common sense that the breakwater would block the dispersion of the materials between the harbor and the outer ocean.

  • PDF

Injection Flow Rate Improvement of Injectors for DME Common-rail Systems (DME 커먼레일 시스템을 위한 인젝터 분사 유량 개선)

  • Lee, G.S.;Shin, S.S.;Park, J.H.
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • In this study, injection flow rates and material of the solenoid sealing of the injectors were improved for the development of a di-methyl Ether(DME) common-rail system. To deliver the same amount of energy provided by injection pressure of diesel $P_{inj}$ = 160 MPa, the DME injectors need to have larger diameter of nozzle hole and more No. of hole at low injection pressure of $P_{inj}$ = 40~50 MPa. The simplified nozzle flow model, which takes account of nozzle geometry and injection condition, was employed in order to design the concept of a injector nozzle such as No. of hole, diameter of hole and diameter of needle seat, etc. Injection amount and rate were tested by diesel and DME test stand. As a result, the diameter of nozzle hole were enlarged by 0.25 mm. The diameter of the orifice in the high pressure line was increased by 1.0 mm to maintain hydraulic force in the nozzle. The material of the solenoid sealing was changed to HNBR, which was strong against the corrosive. Experimental results showed that the injection amount of the DME injector drastically increased by 191.9% comparison to that of diesel at $P_{inj}$ = 40 MPa.