Browse > Article

On Constructing an Explicit Algebraic Stress Model Without Wall-Damping Function  

Park, Noma (School of Mechanical and Aerospace Engineering, Seoul National University)
Yoo, Jung-Yul (School of Mechanical and Aerospace Engineering, Seoul National University)
Publication Information
Journal of Mechanical Science and Technology / v.16, no.11, 2002 , pp. 1522-1539 More about this Journal
Abstract
In the present study, an explicit algebraic stress model is shown to be the exact tensor representation of algebraic stress model by directly solving a set of algebraic equations without resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which are based on the principle of material frame indifference and positive semi-definiteness. An a priori test of the explicit algebraic stress model is carried out by using the DNS database for a fully developed channel flow at Rer = 135. It is confirmed that two-point correlation function between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and asymmetric in the wall-normal direction. Thus, a novel composite algebraic Reynolds stress model is proposed and applied to the channel flow calculation, which incorporates non-local effect in the algebraic framework to predict near-wall behavior correctly.
Keywords
Explicit Algebraic Reynolds Stress Model; Tensor Representation Theory; Elliptic Relaxation Model; Near-Wall Limiting Behaviour; Channel Flow;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Apsley, D.D. and Leschziner, M.A., 1998, 'A New Low-Reynolds-Number Nonlinear Two-Equation Turbulence Model for Complex Flows,' Int. J. Heat and Fluid Flow, Vol. 19, pp. 209-222   DOI   ScienceOn
2 Choi, H., Moin, P. and Kim, J., 1993, 'Direct Numerical Simulation of Turbulent Flow over Riblets,' J. Fluid Mech., Vol. 255, pp. 503-539   DOI   ScienceOn
3 Durbin, P.A., 1993, 'A Reynolds Stress Model for Near-Wall Turbulence,' J. Fluid Mech., Vol. 249, pp. 465-498   DOI   ScienceOn
4 Adumitroaie, V., Ristorcelli, J.R. and Taulbee, D.B., 1999, 'Progress in Favre-Reynolds Stress Closures for Compressible Flows,' Phys. Fluids, Vol.11, No.9, pp. 2696-2719   DOI
5 Choi, H. and Moin, P., 1994, 'Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow,' J. Comput. Phys., Vol. 113, pp. 1-4   DOI   ScienceOn
6 Choi, H., Moin, P. and Kim, J., 1994, 'Active Turbulence Control for Drag Reduction in Wall-Bounded Flows,' J. Fluid Mech., Vol. 262, pp. 75-110   DOI   ScienceOn
7 Durbin, P.A., 1991, 'Near-Wall Turbulence Closure Modeling without Damping Functions,' Theoret. Comput. Fluid Dynamics, Vol. 3, pp. 1-13   DOI
8 Gatski, T.B. and Speziale, C.G., 1993, 'On Explicit Algebraic Stress Models for Complex Turbulent Flows,' J. Fluid Mech., Vol. 254, pp. 59-78   DOI   ScienceOn
9 Girimaji, S.S., 1997, 'A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Turbulent Curved Flows,' Phys. Fluids, Vol. 9, No. 4, pp. 1067-1077   DOI   ScienceOn
10 Hallback, M., Groth, J. and Johansson, A.V., 1990, 'An Algebraic Model for Nonisotropic Turbulent Dissipation Rate in Reynolds Stress Closures,' Phys. Fluids A, Vol. 2, No. 10, pp. 1859-1866   DOI
11 Hanjalic, K., 1994, 'Advanced Turbulence Closure Models: A View of Current Status and Future Prospects,' Int. J. Heat and Fluid Flow, Vol. 15, pp. 178-203   DOI   ScienceOn
12 Hanjalic, K. and Jakirlic, S., 1993, 'A Model of Stress Dissipation in Second-Moment Closures,' Appl. Scientific Research, Vol. 51, pp. 513-518   DOI
13 Kasagi, N., Horiuti, K., Miyake, T., Miyauchi, T. and Nagano, Y., 1992, Establishment of the Direct Numerical Simulation Databases of Turbulent Transport Phenomena, Grant-in-Aid for Cooperative Research No. 02302043, the Ministry of Education, Science and Culture, Japan
14 Kuroda, A., 1990, Direct Numerical Simulation of Couette-Poiseuille Flows, Dr. Eng. Thesis, the University of Tokyo
15 Koroda, A., Kasagi, N. and Hirata, M., 1989, 'A Direct Numerical Simulation of the Fully Developed Turbulent Channel Flow,' International Symposium on Computational Fluid Dynamics, Nagoya, 1989, pp. 1174-1179
16 Koroda, A., Kasagi, N. and Hirata, M., 1989, 'A Direct Numerical Simulation of the Fully Developed Turbulent Channel Flow,' Numer. Met. Fluid Dyn., 1990, Vol. 2, pp. 1012-1017
17 Lele, S.K., 1992, 'Compact Finite Difference Schemes with Spectral-like Resolution,' J. Comp. Phys., Vol. 103, pp. 16-42   DOI   ScienceOn
18 Launder, B.E., Reece, G. and Rodi, W., 1975, 'Progress in the Development of a reynolds-Stress Turbulence Closure,' J. Fluid Mech., Vol. 68, pp. 537-566   DOI   ScienceOn
19 Manceau, R. and Hanjalic, K., 2002, 'Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure,' Phys. Fluids, Vol. 14, No. 2, pp. 744-754   DOI   ScienceOn
20 Manceau, R. and HanJalic, K., 2000, 'A New Form of the Elliptic Relaxation Equation to Ac-count for Wall Effects in RANS Modelling,' Phys. Fluids, Vol. 12, No. 9, pp. 2345-2351   DOI   ScienceOn
21 Manceau, R., Wang, M. and Laurence, D., 2001, 'Inhomogeneity and Anisotropy Effects on the Redistribution Term in Reynolds-Averaged Navier-Strokes Modelling,' J. Fluid Mech., Vol. 438, pp. 307-338   DOI   ScienceOn
22 Mansour, N.N., Kim, J. and Moin, P., 1988, 'Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow,' J. Fluid Mech., Vol. 194, pp. 15-44   DOI   ScienceOn
23 Moser, R.D., Kim, J. and Mansour, M.M., 1998, 'DNS of Turbulent Channel Flow up to $Re_{\tau}$= 590,' Phys. Fluids, Vol. 11, No. 4, pp. 943-945   DOI   ScienceOn
24 Parneix, S., Laurence, D. and Durbin, P.A., 1998, 'A Procedure for Using DNS Databases,' J. Fluids Engrg., Vol. 120, pp. 40-47   DOI   ScienceOn
25 Pope, S.B., 1975, 'A More General Effective-Viscosity Hypothesis,' J. Fluid Mech., Vol. 72, Part 2, pp. 331-340   DOI   ScienceOn
26 Smith, G.F., 1971, 'On Isotropic Functions of Symmetric Tensors, Skew-Symmetric Tensors and Vectors,' Intl J. Engrg Sci., Vol. 9, pp. 899-916   DOI   ScienceOn
27 Spalart, P.R. and Speziale, C.G., 1999, 'A Note on Constraints in Turbulence Modelling,' J. Fluid Mech., Vol. 391, pp. 373-376   DOI
28 Speziale, C.G., 1979, 'Invariance of Turbulent Closure Models,' Phys. Fluids, Vol. 22, pp. 1033-1037   DOI
29 Rodi, W., 1976, 'A New Algebraic Relation for Calculating the Reynolds Stresses,' Z. Angew. Math. Mech., Vol. 56, pp. 219-221   DOI
30 Speziale, C.G., Sarkar, S. and Gatski, T.B., 1991, 'Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,' J. Fluid Mech., Vol. 227, pp. 245-272   DOI
31 Taulbee, D.B., 1992, 'An Improved Algebraic Reynolds Stress Model and Corresponding Nonlinear Stress Model,' Phys. Fluid A, Vol. 4, No. 11, pp. 2555-2561   DOI
32 Vreman, B., Geurts, B. and Kurerten, H., 1996, 'Comparison of Numerical Schemes in Large-Eddy Simulation of the Temporal Mixing Layer,' Int. J. Numer. Meth. Fluids, 22, pp. 297-311   DOI
33 Speziale, C.G. and Gatski, T.B., 1997, 'Ananlysis and Modelling of Anisotropies in the Dissipation Rate of Turbulence,' J. Fluid Mech., Vol. 344, pp. 155-180   DOI   ScienceOn
34 Wallin, S. and Johansson, A.V., 2000, 'An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows,' J. Fluid Mech., Vol. 403, pp. 89-132   DOI   ScienceOn
35 Wang, L., 1997, 'Frame-Indifferent and Positive-Definite Reynolds Stress-Strain Relation,' J. Fluid Mech., Vol. 352, pp. 341-358   DOI   ScienceOn
36 Wolfram, S., 1988, Mathematica, Addison-wesley