• Title/Summary/Keyword: Material flow

Search Result 3,367, Processing Time 0.029 seconds

Preform Design Technique by Tracing the Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.503-508
    • /
    • 2004
  • Preform design techniques have been investigated to reduce die wear and forming load and to improve material flow, filling ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

A Comparative Study on Arrhenius-Type Constitutive Models with Regression Methods

  • Lee, Kyunghoon;Murugesan, Mohanraj;Lee, Seung-Min;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2017
  • A comparative study was performed on strain-compensated Arrhenius-type constitutive models established with two regression methods: polynomial regression and regression Kriging. For measurements at high temperatures, experimental data of 70Cr3Mo steel were adopted from previous research. An Arrhenius-type constitutive model necessitates strain compensation for material constants to account for strain effect. To associate the material constants with strain, we first evaluated them at a set of discrete strains, then capitalized on surrogate modeling to represent the material constants as a function of strain. As a result, disparate flow stress models were formed via the two different regression methods. The constructed constitutive models were examined systematically against measured flow stresses by validation methods. The predicted material constants were found to be quite accurate compared to the actual material constants. However, notable mismatches between measured and predicted flow stresses were revealed by the proposed validation techniques, which carry out validation with not the entire, but a single tensile test case.

Curing Kinetics and Chemorheological Behavior of No-flow Underfill for Sn/In/Bi Solder in Flexible Packaging Applications

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Lee, Jin-Ho
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1179-1189
    • /
    • 2016
  • A chemorheological analysis of a no-flow underfill was conducted using curing kinetics through isothermal and dynamic differential scanning calorimetry, viscosity measurement, and solder (Sn/27In/54Bi, melting temperature of $86^{\circ}C$) wetting observations. The analysis used an epoxy system with an anhydride curing agent and carboxyl fluxing capability to remove oxide on the surface of a metal filler. A curing kinetic of the no-flow underfill with a processing temperature of $130^{\circ}C$ was successfully completed using phenomenological models such as autocatalytic and nth-order models. Temperature-dependent kinetic parameters were identified within a temperature range of $125^{\circ}C$ to $135^{\circ}C$. The phenomenon of solder wetting was visually observed using an optical microscope, and the conversion and viscosity at the moment of solder wetting were quantitatively investigated. It is expected that the curing kinetics and rheological property of a no-flow underfill can be adopted in arbitrary processing applications.

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

A Study on Development of Drying Method of Paddy Rice in Sack (포대단위 곡물건조방법의 개발에 관한 연구)

  • 서상룡;최재갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3980-3990
    • /
    • 1975
  • This study was carried out to develop a method of grain drying ststem that can be done by forcing the heated-air directly into the grains within the sack. The air duct was pushed into the central position of the grain-deposited sack and the heated-air was forced to flow in the radial direction. The system is referred here as the unit sack drying system. At a first step of this study, an air flow resistance tester was constructed to measure the resistance of air flow to grains in cooperated with some different sack materials, the sack materials, the tested were rice-straw bag, sack of polyethylene film, and jute sack In addition, unit sack drying system was constructed to investigate the drying characteristics of the dryer. on this dryer, two kind of terminal air ducts were attached and tested to examine its effects on uniform drying, and also, aseries of drying test was performed to trace the effect of increasing air flow rate on uniform drying. The results are as follows: 1) Resistance of air flow for each sack material was increased almost proportional to the increasing rate of air flow. Experimental data showed little significant differences of the air flow resistance among the materials. 2) From the comparison with air flow resistance of sack material and that of roughrice, it was indicated that airflow resistance of sack material was much higher than that of rice rough Therefore, in the unit sack drying sysle in which air flow is destined to face the sach material after leaving the grain, it was suggested that air flow would be inuniform to each part of grain within sack because of much higher air flow resistance of sack material than that of grain, and the fact would results inuniform grain drying. 3) Drying test on the unit sack drying system in cooperated with different type of terminal air ducts showed that high speed air is better for uniform drying than in high pressure. with the drying system which was assembled with the air ducts delivering higher speed air, there also involved a problem of significant inuniform drying. Therefore, any means to improve the inuniform drying should be undertaken for practical use. 4) A series of drying test with in creasing air flow rate resulted that increasing air flow rate in the unitsack drying system gave little effect on uniform drying, therefore, it is recommened to change its drying system for drying grain uniformly.

  • PDF

Research on the Improvement of Convergence Characteristics of the Fast Decoupled Load Flow (고속분할법의 수렴특성 개선에 관한 연구)

  • Lee, In-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.403-408
    • /
    • 2012
  • In this paper, we propose useful load flow algorithms called FEDL (fast enhanced decoupled load flow). The proposed load flow method can improve the convergence characteristics particularly when the P-Q coupling becomes significant and the power system operating states deviate from the conditions required for stable convergence of the FDL by reflecting in part the effects of the off-diagonal terms in the Jacobian. In our test with IEEE AEP-30 bus system and RTS-96 73-bus system, it converge even when the fast decoupled load flow (FDL) and its variations keeping load flow matrices constant experience convergence problems. Test results show promising performances of the proposed algorithms in their convergence characteristics both in number of iterations and overall convergence speeds.

Process Design to Prevent Flow Defect of Piston-Pin for Automobile (자동차용 피스톤-핀의 유동결함 방지를 위한 공정설계)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.155-158
    • /
    • 2000
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In cold forging of piston-pin Lapping defect a kind of flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The finite element simulations are applied to analyze the flow defect. This study proposed processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experiments for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF

Simulation of Liquid Crystals Considering Flow Effect (흐름효과를 고려한 액정의 시뮬레이션)

  • Kim Hoon;Park Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.260-266
    • /
    • 2006
  • In this paper, We coupled fluid balance and director balance equation from Ericksen-Leslie's continuum theory and observed the motion of Liquid Crystal molecular. We simulated flow velocity and director distribution in which flow effect is considered in switching on and switching off state. We interpreted the dynamic response characteristic caused by the flow. As the result of the simulation, We could see the flow effect. In the case of Twisted Nematic(TN) cell, this flow caused abnormal twist temporarily in switching off state. We could prove that this abnormal twist is a direct cause of optical bounce phenomenon known well until now with the result of simulation. In addition, We analyzed the mechanism of the fast response due to flow in the case of Optically Compensated Bend(OCB) cell.

Effect of Flow Stress, Friction, Temperature, and Velocity on Finite Element Predictions of Metal Flow Lines in Forgings (유동응력, 마찰, 온도, 속도 등이 단조 중 단류선의 유한요소예측에 미치는 영향)

  • Choi, M. H.;Jin, H. T.;Joun, M. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, the effect of flow stress, friction, temperature, and velocity on finite element predictions of metal flow lines after cylindrical upsetting is presented. An actual three-stage hot forging process involving an upsetting step is utilized and experimental metal flow lines are measured to study the effect of the various process variables. It was found that temperature and velocity for reasonable values of friction have little influence on metal flow lines especially those located deep within the cylinder but that flow stress has a direct influence on the flow lines. It was shown that a pure power law material model cannot reflect the real flow stress of hot material because it underestimates the flow stress especially around the dead-metal zone for the upsetting of a cylindrical specimen. It is thus recommended that a proper lower limit of flow stress be assumed to alleviate this issue.

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.