• Title/Summary/Keyword: Material behavior

Search Result 5,765, Processing Time 0.041 seconds

A Study on the Confined Effects of Highly Moistured Soils Reinforced with Geosynthetics (토목섬유가 보강된 고함수비 흙의 구속효과에 관한 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Kang, Sang-Kyun;Lee, Hyung-Jun;Choi, Moon-Bong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • This study confirms reinforcing effect of geosynthetics in the use of soil at higher water contents as a compaction material on compaction tests, field compaction tests, and numerical analysis. To verify a confined effect, a large mold(area ratio of rammer / mold = 0.19) larger than D compaction mold(area ratio of rammer / mold = 0.33) was performed for compaction. It showed that in the D compaction test, dry density were 0.5~0.6% increases and in the compaction test using the large mold, it were 2.4~3.7% increases at high water contents. It shows that when the area of compacted area is large enough, a confined effect could be arising from the reinforcement of geosynthetics even at high water contents. As a result of analyzing of compaction effects according to 'depth(z/B) from compacted surface' in the field, when not reinforced, the compaction state deteriorated due to the over-compaction and the compaction did not work well. However, when reinforcement of geosynthetics, restraint effect by geosynthetics occurs, it is confirmed that the compaction energy is effectively transferred to the compaction layer and the dry density is increased. Also, through the conceptual model of the behavior of geosynthetic and soil layer, the mechanism in the ground due to reinforcement of geosynthetics is presented and it is verified through finite element analysis.

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

Evaluation of the Behavioral Characteristics of Soil Nail Using High-strength Steel Pipe through Field Test (현장시험을 통한 고강도 강관을 이용한 쏘일네일의 거동특성 평가)

  • Park, Jeaman;Park, Duhee;Lee, Jongkwon;Jung, Kyoungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.5-13
    • /
    • 2021
  • In this study, as the production of high-strength steel pipes due to the development of steel materials, the stability and applicability of the soil nailing method using high-strength steel pipes were evaluated. Rebars used as reinforcement in the soil nailing method are the same in order to determine the behavioral characteristics and the effect of increasing the reinforcement when replacing it with a high-strength steel pipe of a diameter, a field test were conducted to confirm the stability. As a result of the tensile test, the measured strain is smaller than the strain in the theoretical equation, so it can be seen that the behavior is similar to that of the soil nailing method using rebars. As a result of the displacement measurement, the displacement of the high-strength steel pipe is larger than that of the rebars is considered to be the effect of the internal grouting effect of the steel pipe and the decrease in the cross-sectional area. In the case of using high-strength steel pipes for the soil nailing method, it is judged that the field applicability is good by improving stability and workability through member performance and weight reduction.

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.

Legal Strategy for the sake of Enhancement of Safety of Lifts Operation - focusing on the Experience of UK - (승강기 안전성 제고를 위한 법제적 전략 - 영국의 경험을 참고하여 -)

  • Kim, Yong-Hoon
    • Journal of Legislation Research
    • /
    • no.54
    • /
    • pp.111-154
    • /
    • 2018
  • The protection of fundamental rights of people is a natural duty of a state. Since Constitutional Law declare that a state is obliged to protect the fundamental rights of people obviously, it is reasonable to postulate that a state has a duty to protect every person's right much more positively. Of course, it is true that whereas right of freedom is much more important in modern states, the social right becomes more important currently. Nevertheless, we have no choice but to put an emphasis on the importance of the right of freedom like modern states. Thus states are still bound to try to protect the right of people, specific duty of behavior for the sake of right of freedom belongs to states. In particular, due to the fact that lifts are essential to our comfortable life and the demage from the accident concerning with the lifts is fatal, the strategy for securing the safety of using the lifts is significant to some extent. And because it is true that the experience of UK that put an emphasis on the role of civil actors is meaningful to us, there seems implications for us. Accordingly, it is possible to consider the material components such as the check of safety before installation for the sake of safety enhancement, quality control for lifts parts, specification of check criterion and variation of check cycle etc. and personal ones such as specification of qualification of competent persons, guarantee of competent person's independence, variation of obligator's duty and variation of user's obligation etc. However, as the situation of UK is one thing and that of Korea is another, we don't have to adhere to the policy and the experience of UK strictly. Rather, we had better apply the policy and experience of UK to ours appropriately.

Effect of Multi-Walled Carbon Nanotube on Rheological Behavior and Compressive Strength of Cement Paste (다중벽 탄소나노튜브가 시멘트 페이스트의 유변학적 물성 및 압축강도에 미치는 영향)

  • Kim, Ji-Hyun;Kim, Won-Woo;Moon, Jae-Heum;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.467-474
    • /
    • 2020
  • Carbon nanotube has excellent mechanical strength and functionality, so it has been utilized in various applications. In recent years, utilization of carbon nanotube in construction material has started to get interests from researchers in the area of construction materials. However, there is limited amount of work with respect to the rheological properties of cement paste using carbon nanotube. In this work, solution made of multi-walled carbon nanotube with dispersing agent of polyvinyl pyrrolidone was used to prepare cement paste specimens, and rheological properties and 28 day compressive strengths of cement paste using multi-walled carbon nanotube were measured. According to the experimental results, as the amounnt of multi-walled carbon nanotube increased, plastic viscosity and yield stress of cement paste specimens also increased. It was also found that such effect was higher with lower w/c cement paste specimens. With respect to the compressive strength, it was maximized at carbon nanotube content of 0.1wt.% for w/c 0.30 cement paste, whereas the maximum strength of w/c 0.40 cement paste was observed with carbon nanotube content of 0.2wt%.

Estimation of Potential Risk and Numerical Simulations of Landslide Disaster based on UAV Photogrammetry (무인 항공사진측량 정보를 기반으로 한 산사태 수치해석 및 위험도 평가)

  • Choi, Jae Hee;Choi, Bong Jin;Kim, Nam Gyun;Lee, Chang Woo;Seo, Jun Pyo;Jun, Byong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.675-686
    • /
    • 2021
  • This study investigated the ground displacement occurring in a slope below a waste-rock dumping site and estimated the likelihood of a disaster due to a landslide. To start with, photogrammetry was conducted by unmanned aerial vehicles (UAVs) to investigate the size and extent of the ground displacement. From April 2019 to July 2020, the average error rate of the five UAV surveys was 0.011-0.034 m, and an elevation change of 2.97 m occurred due to the movement of the soil layer. Only some areas of the slope showedelevation change, and this was believed to be due to thegroundwater generated during rainfall rather than the effect of the waste-rock load at the top. Sensitivity analysis for LS-RAPID simulation was performed, and the simulation results were compared and analyzed by applying a digital elevation model (DEM) and a digital surface model (DSM)as terrain data with 10 m, 5 m, and 4 m grids. When data with high spatial resolution were used, the extent of the sedimentation of landslide material tended to be excessively expanded in the DEM. In contrast, in the result of applying a DSM, which reflects the topography in detail, the diffusion range was not significantly affected even when the spatial resolution was changed, and the sedimentation behavior according to the river shape could be accurately expressed. As a result, it was concluded that applying a DSM rather than a DEM does not significantly expand the sedimentation range, and results that reflect the site situation well can be obtained.

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural (휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사)

  • Kim, Tae-Uk;Kim, Min-Kyoung;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2022
  • This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.

Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test (반복삼축압축시험을 이용한 국내 모래지반의 액상화 거동 특성 비교)

  • Seo, Hyeok;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.493-506
    • /
    • 2021
  • Liquefaction refers to a phenomenon in which excessive pore water pressure occurs when a dynamic load such as an earthquake rapidly acts on a loose sandy soil saturated with soil, and the ground loses effective stress and becomes liquefied. The indoor repeated test for liquefaction evaluation can be confirmed through the repeated triaxial compression test and the repeated shear test. In this regard, this study tried to confirm the liquefaction resistance strength according to the relative density and particle size distribution of sand using the repeated triaxial compression test. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the soil classification, and the liquefaction resistance strength according to the particle size distribution of the sand was confirmed that the liquefaction resistance strength of the SP sample close to SW was significantly higher. In addition, as a result of analyzing 30% of fine powder compared to 0% of fine powder, as the relative density increased to 40~70%, the liquefaction resistance strength decreased by 5~20%, and the domestic weathered soil ground had a fine liquefaction resistance strength compared to Jumunjin standard sand. When the minute was 10%, it was measured to be 30% or more, and when the fine particle was 30%, it was measured to be less than 50%.