• Title/Summary/Keyword: Material Stretching

Search Result 180, Processing Time 0.027 seconds

Dehydration effects on spectroscopic properties of $Er^{+3}$ doped phosphate laser Glass ($Er^{+3}$ 첨가된 인산염 레이저 유리의 탈 수산기 영향에 관한 분광학적 특성)

  • Cho, Kou-Sung;Park, Wan-Soo;Kim, Jong-Su;Kim, Chong-Don
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.335-335
    • /
    • 2008
  • Phosphate glass samples with various $Cr_2O_3$ and $Er_2O_3$ contents based upon $55P_2O_5\cdot24BaO\cdot10K_2O\cdot4Al_2O_3\cdot6Yb_2O_3$ were prepared. The prepared glass compositions are dehydrated using gas bubble flow method in open system and investigated the effects of the eliminating of OH groups from the glass melts with bubbling time. It was found that the probability of $Er^{+3}$ fluorescence quenching by OH groups oscillations linear depends upon the OH groups absorption coefficients in the maximum of the stretch vibrations band at $3500cm^{-1}$ while $Er^{+3}$ concentration range is between $1.6\times10^{19}$ and $21.2\times10^{19}$ ion/$cm^3$.

  • PDF

A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation

  • Nasrine Belbachir;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed A. Al-Osta;Mofareh Hassan Ghazwani;Ali Alnujaie;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.433-443
    • /
    • 2023
  • The current paper discusses the dynamic and stability responses of cross-ply composite laminated plates by employing a refined quasi-3D trigonometric shear deformation theory. The proposed theory takes into consideration shear deformation and thickness stretching by a trigonometric variation of in-plane and transverse displacements through the plate thickness and assures the vanished shear stresses conditions on the upper and lower surfaces of the plate. The strong point of the new formulation is that the displacements field contains only 4 unknowns, which is less than the other shear deformation theories. In addition, the present model considers the thickness extension effects (εz≠0). The presence of the Winkler-Pasternak elastic base is included in the mathematical formulation. The Hamilton's principle is utilized in order to derive the four differentials' equations of motion, which are solved via Navier's technique of simply supported structures. The accuracy of the present 3-D theory is demonstrated by comparing fundamental frequencies and critical buckling loads numerical results with those provided using other models available in the open literature.

The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode (그래핀 첨가에 따른 신축성 카본전극의 전기적 특성 변화)

  • Lee, T.W.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.77-82
    • /
    • 2014
  • Stretchable electrodes are focused due to many demands for soft electronics. One of the candidates, carbon black composites have advantages of low cost, easy processing and decreasing resistivity in a certain range during stretching. However, the electrical conductivity of carbon black composites is not enough for electronic devices. Graphene is 2-dimensional nanostructured carbon based material which shows good electrical properties and flexibility. They may help to improve electrical conductivity of the carbon black composites. In this study, graphene was added to a carbon black electrode to enhance electrical properties and investigated. Electrical resistivity of graphene added carbon electrode decreased comparing with that of carbon black electrode because graphene bridged non-contacting carbon black aggregates to strengthen the conductive network. Also graphene reduced an increase in the resistance of the carbon black electrode applied to strain because they connected gap of separated carbon black aggregates and aligned along the stretching direction at the same time. In conclusion, an addition of graphene to carbon black gives two benefits on the electrical properties of carbon black composite as a stretchable electrode.

Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea (광양 폐금광 수계에 형성된 철수산화물에 대한 광물학적 및 지구화학적 특성)

  • Park, Cheon-Young;Jeoung, Yeon-Joong;Kim, Seoung-Ku
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.208-222
    • /
    • 2001
  • Geochemical investigations on suspended amorphous iron oxide material from the Kwangyang gold mine and its surrounding area, Cheonnam, Korea have been carried out. The sediments samples were collected from 11 location along Kwangyang mine area and were air dried and sieved to -80 mesh. These samples consist mainly of iron, silicon and alumina. The Fe$_2$O$_3$ contents ranges from 17.9 wt.% to 72.3 wt.%. The content of Fe$_2$O$_3$ increase with decreasing Si, Al, Mg, Na, K, Mn, and Ti, whereas the contents of Te, Au, Ga, Bi, Cd, Hg, Sb, and Se increase in the amorphous stream sediments. Amorphous stream sediments have been severely enriched for As (up to 54.9 ppm), Bi (up to 3.77 ppm), Cd (up to 3.65 ppm), Hg (up to 64 ppm), Sb (up to 10.1 ppm), Cu (up to 37.1 ppm), Mo (up to 8.86 ppm), Pb (up to 9.45 ppm) and Zn (up to 29.7 ppm). At the upstream site, the Au content (up to 4.4 ppm) in the amorphous stream sediments are relatively high but those contents decrease with distance of mine location. The content of Ag (up to 0.24 ppm) were low in upstream site but those contents increase significantly in the downstream sites. The X-ray diffraction patterns of the samples have virtually no sharp and discrete peaks, indicating that some samples are amorphous or poorly-ordered. The quartz, goethite, kaolinite and illite were associated in amorphous stream sediments. The infrared spectra for amorphous stream sediments show major absorption bands due to OH stretching, adsorbed molecular water, sulfate and Fe-O stretching, respectively.

  • PDF

Flexibility Study of Silicon Thin Film Transferred on Flexible Substrate (폴리머 기판 위에 전사된 실리콘 박막의 기계적 유연성 연구)

  • Lee, Mi-Kyoung;Lee, Eun-Kyung;Yang, Min;Chon, Min-Woo;Lee, Hyouk;Lim, Jae Sung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • Development of flexible electronic devices has primarily focused on printing technology using organic materials. However, organic-based flexible electronics have several disadvantages, including low electrical performance and long-term reliability. Therefore, we fabricated nano- and micro-thick silicon film attached to the polymer substrate using transfer printing technology to investigate the feasibility of silicon-based flexible electronic devices with high performance and high flexibility. Flexibility of the fabricated samples was investigated using bending and stretching tests. The failure bending radius of the 200 nm-thick silicon film attached on a PI substrate was 4.5 mm, and the failure stretching strain was 1.8%. The failure bending radius of the micro-thick silicon film attached on a FPCB was 2 mm, and the failure strain was 3.5%, which showed superior flexibility compared with conventional silicon material. Improved flexibility was attributed to a buffering effect of the adhesive between the silicon film and the substrate. The superior flexibility of the thin silicon film demonstrates the possibility for flexible electronic devices with high performance.

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.

Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties (그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향)

  • Park, Ju Young;Shin, Jin Hwan;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and $280^{\circ}C$ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature ($T_g$) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at $260^{\circ}C$. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at $260^{\circ}C$. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at $3000cm^{-1}$ and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).

Applications of Mathematical Optimization Method for Chemical Industries (화학 산업에서 수학적 최적화 기법을 적용한 사례)

  • Kim, Eun-Yong;Heo, Soon-Ki;Lee, Kyu-Hwang;Lee, Hokyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.209-223
    • /
    • 2020
  • Executions of SCM in a chemical company of which divisions produce petrochemicals, compounds, batteries, IT material and medicine directly affect their own profit. Execution level of SCM or optimization is very important. This work presents activities of SCM and optimization of inefficient issues in several industrial divisions using mathematical optimization method. The meaning is not only academic research but also making a useful tool which active partner deals with in his work. It is explained how to do beforehand and afterward optimization problem. The benefits are mentioned in the sections. The first of examples would be cover supply plan optimization, optimal profit business plan, and scheduling of a stretching process of polarizer based on minimizing raw material loss in polarizer production. The second example would be cover the optimization of production/packaging plans to maximize productivity of Poly Olefin processes, and the third example is minimization of transition loss in the production of battery electrodes. The fourth example would be cover scheduling of vessel approaching to berth. Because transportation of large portion of raw material and products of petrochemical industry is dealt with vessel, scheduling of vessel approaching to berth is important at the shore of large difference of tide. The final example would be scheduling problem to minimization of change over time of ABS semi products.

Effect of Hot Pressing/Melt Mixing on the Properties of Thermoplastic Polyurethane

  • Lee, Young-Hee;Kang, Bo-Kyung;Kim, Han-Do;Yoo, Hye-Jin;Kim, Jung-Soo;Huh, Jae-Ho;Jung, Young-Jin;Lee, Dong-Jin
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.616-622
    • /
    • 2009
  • In-depth understanding of the influence of hot pressing and melt processing on the properties of thermoplastic polyurethane (TPU) is critical for effective mechanical recycling of TPU scraps. Therefore, this study focused on the effects of hot pressing and melt mixing on molecular weight (MW), polydispersity index (PDI), melt index (MI), characteristic IR peaks, hardness, thermal degradation and mechanical properties of TPU. The original TPU pellet (o-TPU) showed two broad peaks at lower and higher MW regions. However, four TPU film samples, TPU-0 prepared only by hot pressing of o-TPU pellet and TPU-1, TPU-2 and TPU-3 obtained by hot pressing of melt mixed TPUs (where the numbers indicate the run number of melt mixing), exhibited only a single peak at higher MW region. The TPU-0 film sample had the highest $M_n$ and the lowest PDI and hardness. The TPU-1 film sample had the highest $M_w$ and tensile modulus. As the run number of melt mixing increased, the peak-intensity of hydrogen bonded C=O stretching increased, however, the free C=O peak intensity, tensile strength/elongation at break and average MW decreased. All the samples showed two stage degradations. The degradation temperatures of TPU-0 sample (359 $^{\circ}C$ and 394 $^{\circ}C$)were higher than those of o-TPU (342 $^{\circ}C$ and 391 $^{\circ}C$). While all the melt mixed samples degraded at almost the same temperature (365 $^{\circ}C$ and 381 $^{\circ}C$). The first round of hot pressing and melt mixing was found to be the critical condition which led to the significant changes of $M_n$/$M_w$/PDI, MI, mechanical property and thermal degradation of TPU.

Fabrication of an Oxide-based Optical Sensor on a Stretchable Substrate (스트레처블 기판상에 산화물 기반의 광센서 제작)

  • Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.79-85
    • /
    • 2022
  • Recently, a smartphone manufactured on a flexible substrate has been released as an electronic device, and research on a stretchable electronic device is in progress. In this paper, a silicon-based stretchable material is made and used as a substrate to implement and evaluate an optical sensor device using oxide semiconductor. To this end, a substrate that stretches well at room temperature was made using a silicone-based solution rubber, and the elongation of 350% of the material was confirmed, and optical properties such as reflectivity, transmittance, and absorbance were measured. Next, since the surface of these materials is hydrophobic, oxygen-based plasma surface treatment was performed to clean the surface and change the surface to hydrophilicity. After depositing an AZO-based oxide film with vacuum equipment, an Ag electrode was formed using a cotton swab or a metal mast to complete the photosensor. The optoelectronic device analyzed the change in current according to the voltage when light was irradiated and when it was not, and the photocurrent caused by light was observed. In addition, the effect of the optical sensor according to the folding was additionally tested using a bending machine. In the future, we plan to intensively study folding (bending) and stretching optical devices by forming stretchable semiconductor materials and electrodes on stretchable substrates.