• 제목/요약/키워드: Material Nonlinear

검색결과 1,741건 처리시간 0.024초

신장률 변화에 따른 초탄성 재료의 비선형 재료모델 비교 연구 (Comparative Study on the Nonlinear Material Model of HyperElastic Material Due to Variations in the Stretch Ratio)

  • 이강수;기민석;박병재
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.253-260
    • /
    • 2018
  • Recently, the application of non-steel materials in ships and offshore plants is increasing because of the development of various nonlinear materials and the improvement of performance. Especially, hyper-elastic materials, which have a nonlinear stress-strain relationship, are used mainly in marine plant structures or ships where impact relaxation, vibration suppression, and elasticity are required, while elasticity must be maintained, even under high strain conditions. In order to simulate and evaluate the behavior of the hyperelastic material, it is very important to select an appropriate material model according to the strain of the material. This study focused on the selection of material models for hyperelastic materials, such as rubber used in the marine and offshore fields. Tension and compression tests and finite element simulations were conducted to compare the accuracy of the nonlinear material models due to variations in the stretch ratio of hyper-elastic material. Material coefficients of nonlinear material models are determined based on the curve fitting of experimental data. The results of this study can be used to improve the reliability of nonlinear material models according to stretch ratio variation.

복합재 적층셸의 비선형 수치해석 및 실험 (Nonlinear Numerical Analysis and Experiment of Composite Laminated Shell)

  • 조원만;이영신;윤성기
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2051-2060
    • /
    • 1993
  • A finite element program using degenerated shell element was developed to solve the geometric, material and combined nonlinear behaviors of composite laminated shell. The total Lagrangian method was implemented for geometric nonlinear analysis. The material nonlinear behavior was analyzed by considering the matrix degradation due to the progressive failure in the matrix and matrix-fiber interface after initial failure. The result of the geometric nonlinear analysis showed good agreement with the other exact and numerical solutions. The results of the combined analyses considered both geometric and material nonlinear analyses were compared with the experiments in which internal pressure was applied to the filament wound antisymmetric tubes.

비선형 유한요소해석을 이용한 웨더스트립의 특성예측 (Prediction for Weather Strip Using Nonlinear Finite Element Analysis)

  • 장왕진;한창용;우창수;이성범
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.1022-1027
    • /
    • 2008
  • TPE is used as alternative for rubber, the best example is the weather strip for automobile. The nonlinear material properties of weather strip were important to predict the behaviors of weather strip. Uniaxial tension and equi-biaxial tension tests were performed to achieve the nonlinear material constant and stress-strain curves. The nonlinear material constant of weather strip is evaluated by using the nonlinear finite element analysis. In this paper, the prediction for weather strip is analyzed by using commercial finite element program, ANSYS. The nonlinear finite element analysis of weather strip is executed to predict the behavior of weather strip for automobile.

유한요소 해석을 이용한 단층 래티스 돔의 비선형비탄성 해석 (Geometric and Material Nonlinear Analysis of Single Layer Dome using ABAQUS)

  • 김연태;정미루;이재홍
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.119-124
    • /
    • 2008
  • 대공간 구조물은 3차원적인 힘의 흐름과 면내력에 의해 외부하중에 대한 저항 능력을 극대화 시킨 형태 저항 구조로서, 일반적인 골조와는 달리 부재에 대한 유한 변형을 동반 하므로 정적, 동적 해석에 관계없이 비선형 해석이 요구 된다. 대공간 구조물의 정확한 구조 해석을 수행하기 위해서는 기하학적 비선형 및 재료적 비선형 뿐 아니라 복합적인 비선형 해석이 필요하다. 기하학적 비선형 문제가 구조재료의 특성 및 위치에 따른 비선형을 고려하지 못하고, 구조재료의 비선형 문제가 기하학적 형상에 따른 비선형을 고려하지 못한다는 상호간의 단점을 해결하기 위하여, 본 논문에서는 동일조건하에서 기하학적 비선형과 재료적 비선형을 함께 고려하며, 범용 유한요소 해석 프로그램인 ABAQUS를 이용하여 하중-변위 곡선을 추적하였다.

  • PDF

Effect of compressible membrane's nonlinear stress-strain behavior on spiral case structure

  • Zhang, Qi-Ling;Wu, He-Gao
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.73-93
    • /
    • 2012
  • With an active structural involvement in spiral case structure (SCS) that is always the design and research focus of hydroelectric power plant (HPP), the compressible membrane sandwiched between steel spiral case and surrounding reinforced concrete was often assumed to be linear elastic material in conventional design analysis of SCS. Unfortunately considerable previous studies have proved that the foam material serving as membrane exhibits essentially nonlinear mechanical behavior. In order to clarify the effect of membrane (foam) material's nonlinear stress-strain behavior on SCS, this work performed a case study on SCS with a compressible membrane using the ABAQUS code after a sound calibration of the employed constitutive model describing foam material. In view of the successful capture of fitted stress-strain curve of test by the FEM program, we recommend an application and dissemination of the simulation technique employed in this work for membrane material description to structural designers of SCS. Even more important, the case study argues that taking into account the nonlinear stress-strain response of membrane material in loading process is definitely essential. However, we hold it unnecessary to consider the membrane material's hysteresis and additionally, employment of nonlinear elastic model for membrane material description is adequate to the structural design of SCS. Understanding and accepting these concepts will help to analyze and predict the structural performance of SCS more accurately in design effort.

초음파 비선형 전파특성을 이용한 부분 열화 재료의 평가 (The Evaluation of Partially Degraded Material Using Nonlinear Propagation Characteristics of Ultrasonic Wave)

  • 김경조;장경영;야마와키히사시
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.214-219
    • /
    • 2001
  • In this paper, the nonlinear behavior of ultrasonic wave in partially degraded material is considered. For this aim, FDM(finite difference method) model for the nonlinear wave equation was developed with the restriction to the 1-D longitudinal wave motion and how the partial degradation in material contributes to the detected nonlinear parameter was analyzed quantitatively. In order to verify the rightness of this simulation method, the relation between the detected nonlinear parameter and the continuous distribution of degradation obtained from simulation was compared with experiment results and the simulation and experiment results showed similar tendency. It can be known from simulation result that the degree of degradation, the range of degradation and the continuous distribution of degradation have strong correlation with the detected nonlinear parameter. As it was possible in these simulations that only special part is assumed as degraded one, the quantitative evaluation of partially degraded material may be obtained by using this method.

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • 제15권3호
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.

Nonlinear static analysis of functionally graded porous beams under thermal effect

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.399-415
    • /
    • 2017
  • This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.

열팽창성 그래파이트 함량에 따른 고탄성 도료 소재의 특성 분석 및 비선형 재료모델을 활용한 물성 예측 시뮬레이션 연구 (Characteristics Analysis of Highly Elastic Materials according to the Graphite Content and a Simulation Study of Physical Properties Prediction Using a Nonlinear Material Model)

  • 유성훈;이종혁;김대철;이병수;심지현
    • 한국염색가공학회지
    • /
    • 제34권4호
    • /
    • pp.250-260
    • /
    • 2022
  • In this research, a high-elasticity acrylic emulsion binder with core-shell polymerization and self-crosslinking system is mixed with a flame-retardant water-dispersed polyurethane (PUD) binder. In addition, finite element analysis was conducted through virtual engineering software ANSYS by applying three representative nonlinear material models. The most suitable nonlinear material model was selected after the relative comparison between the actual experimental values and the predicted values of the properties derived from simulations. The selected nonlinear material model is intended to be used as a nonlinear material model for computational simulation analysis that simulates the experimental environment of the vibration test (ASTM E1399) and the actual fire safety test (ASTM E1966). When the mass fraction of thermally expandable graphite was 0.7%, the thermal and physical properties were the best. Among the nonlinear material models, the simulation result of the Ogden model showed the closest value to the actual result.

압력 용기 도옴의 형상 및 두께 변화에 따른 비선형 응력해석 (Nonlinear Stress Analysis of Pressure Vessel for Various Dome Shapes and Thicknesses)

  • 이영신;조원만;구송회
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2634-2645
    • /
    • 1993
  • Dome structures of pressure vessels subjected to internal pressure are usually analyzed by linear elastic theory assuming small deformation. Geometric and material nonlinear behaviors appear in actual dome structures because of large deformation and loads exceeding yield strength. In this paper, linear and nonlinear analyses were performed for various hemispherical and torispherical domes to check the effects of geometric and material nonliearity on the stress and displacement by the finite element method. The effect of the geometric nonlinearity decreased the stress levels a lot for very thin general torispherical domes, which enables more realistic and effective design. The material nonlinear effects are negligible for hemispherical and optimum torispherical domes, and those are large for most of the general torispherical domes.